1 |
张安, 张元东, 刘秀良, 等. 先进航空钛合金材料研究进展[J]. 科技与创新, 2023(13): 90-92.
|
|
ZHANG A, ZHANG Y D, LIU X L, et al. Research progress of advanced aviation titanium alloy materials[J]. Science and Technology & Innovation, 2023(13): 90-92 (in Chinese).
|
2 |
黄云, 李少川, 肖贵坚, 等. 航空发动机叶片材料及抗疲劳磨削技术现状[J]. 航空材料学报, 2021, 41(4): 17-35.
|
|
HUANG Y, LI S C, XIAO G J, et al. Research progress of aero-engine blade materials and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials, 2021, 41(4): 17-35 (in Chinese).
|
3 |
HE G Y, SUN D Y, CHEN J, et al. Key problems affecting the anti-erosion coating performance of aero-engine compressor: A review[J]. Coatings, 2019, 9(12): 821.
|
4 |
何光宇, 李应红, 柴艳, 等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015, 36(6): 1733-1743.
|
|
HE G Y, LI Y H, CHAI Y, et al. Review of key issues on coating against sand erosion of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1733-1743 (in Chinese).
|
5 |
HAMED A, TABAKOFF W C, WENGLARZ R V. Erosion and deposition in turbomachinery[J]. Journal of Propulsion and Power, 2006, 22(2): 350-360.
|
6 |
BOUSSER E, MARTINU L, KLEMBERG-SAPIEHA J E. Solid particle erosion mechanisms of protective coatings for aerospace applications[J]. Surface and Coatings Technology, 2014, 257: 165-181.
|
7 |
BOUSSER E, MARTINU L, KLEMBERG-SAPIEHA J E. Solid particle erosion mechanisms of hard protective coatings[J]. Surface and Coatings Technology, 2013, 235: 383-393.
|
8 |
KABLOV E N, MUBOYADZHYAN S A. Erosion-resistant coatings for gas turbine engine compressor blades[J]. Russian Metallurgy (Metally), 2017, 2017(6): 494-504.
|
9 |
POBEDINSKAS P, BOLSÉE J C, DEXTERS W, et al. Thickness dependent residual stress in sputtered AlN thin films[J]. Thin Solid Films, 2012, 522: 180-185.
|
10 |
YONEKURA D, FUJITA J, MIKI K. Fatigue and wear properties of Ti-6Al-4V alloy with Cr/CrN multilayer coating[J]. Surface and Coatings Technology, 2015, 275: 232-238.
|
11 |
OSKOUEI R H, IBRAHIM R N, BARATI M R. An experimental study on the characteristics and delamination of TiN coatings deposited on Al 7075-T6 under fatigue cycling[J]. Thin Solid Films, 2012, 526: 155-162.
|
12 |
PUCHI-CABRERA E S, STAIA M H, OCHOA-PÉREZ E A, et al. Fatigue behavior of a 316L stainless steel coated with a DLC film deposited by PVD magnetron sputter ion plating[J]. Materials Science and Engineering: A, 2010, 527(3): 498-508.
|
13 |
BARAGETTI S, BOŽIĆ Ž, ARCIERI E V. Stress and fracture surface analysis of uncoated and coated 7075-T6 specimens under the rotating bending fatigue loading[J]. Engineering Failure Analysis, 2020, 112: 104512.
|
14 |
ZAUNER L, HAHN R, ASCHAUER E, et al. Assessing the fracture and fatigue resistance of nanostructured thin films[J]. Acta Materialia, 2022, 239: 118260.
|
15 |
SAINI B S, GUPTA V K. Effect of WC/C PVD coating on fatigue behaviour of case carburized SAE8620 steel[J]. Surface and Coatings Technology, 2010, 205(2): 511-518.
|
16 |
YıLDıZ F, YETIM A F, ALSARAN A, et al. Plain and fretting fatigue behavior of Ti6Al4V alloy coated with TiAlN thin film[J]. Tribology International, 2013, 66: 307-314.
|
17 |
SIVAGNANAM CHANDRA N P, OTSUKA Y, MUTOH Y, et al. Fatigue strength and mechanism of Ti6242S titanium alloy with TiAlN coating deposited under various bias voltages[J]. International Journal of Fatigue, 2020, 131: 105338.
|
18 |
LEE C M, CHU J P, CHANG W Z, et al. Fatigue property improvements of Ti-Al-4V by thin film coatings of metallic glass and TiN: A comparison study[J]. Thin Solid Films, 2014, 561: 33-37.
|
19 |
ZHANG Z L, ZHANG Y L, ZHANG Z L, et al. Effect of brittle TiN coating on fatigue performance of TC11 titanium alloy under rotating bending and tension-tension[J]. Journal of Alloys and Compounds, 2023, 968: 172163.
|
20 |
ZHANG Z L, CHEN J, HE G Y, et al. Fatigue and mechanical behavior of Ti-6Al-4V alloy with CrN and TiN coating deposited by magnetic filtered cathodic vacuum arc process[J]. Coatings, 2019, 9(10): 689.
|
21 |
BAI Y Y, XI Y T, GAO K W, et al. Brittle coating effects on fatigue cracks behavior in Ti alloys[J]. International Journal of Fatigue, 2019, 125: 432-439.
|
22 |
中国航空工业总公司第六二一研究所. 金属室温旋转弯曲疲劳试验方法: [S]. 北京: 中国航空工业总公司, 1996.
|
|
The 621st Research Institute, Aviation Industry Corporation of China. Rotating bending fatigue test method for metals at room temperature: [S]. Beijing: Aviation Industry Corporation of China, 1996 (in Chinese).
|
23 |
HE G Y, SUN D Y, ZANG S L, et al. Evaluation of the elastic-plastic properties of TiN coating by nanoindentation technologies using FEM-reverse algorithm[J]. Surface and Coatings Technology, 2021, 409: 126855.
|
24 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 无损检测 X射线应力测定方法: [S]. 北京: 中国标准出版社, 2017.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Non-destructive testing—Practice for residual stress measurement by X-ray: [S]. Beijing: Standards Press of China, 2017. (in Chinese).
|
25 |
中华人民共和国航空工业部. 材料疲劳试验统计分析方法: [S]. 北京: 中国航空综合技术研究所, 1986.
|
|
The Ministry of Aviation Industry of the People’s Republic of China. Statistical analysis method of material fatigue testing: [S]. Beijing: Aviation Comprehensive Technology Research Institute of China, 1986 (in Chinese).
|
26 |
GUO T, CHEN Y M, CAO R H, et al. Cleavage cracking of ductile-metal substrates induced by brittle coating fracture[J]. Acta Materialia, 2018, 152: 77-85.
|
27 |
HASSANI S, KLEMBERG-SAPIEHA J E, Mechanical MARTINU L., tribological and erosion behaviour of super-elastic hard Ti-Si-C coatings prepared by PECVD[J]. Surface and Coatings Technology, 2010, 205(5): 1426-1430.
|
28 |
COSTA M Y P, VENDITTI M L R, CIOFFI M O H, et al. Fatigue behavior of PVD coated Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2011, 33(6): 759-765.
|
29 |
BAI Y Y, GUO T, WANG J W, et al. Stress-sensitive fatigue crack initiation mechanisms of coated titanium alloy[J]. Acta Materialia, 2021, 217: 117179.
|
30 |
王慧军, 陈林, 郭飞翔, 等. 残余应力对U75V重轨钢疲劳裂纹扩展速率的影响[J]. 金属热处理, 2017, 42(6): 23-27.
|
|
WANG H J, CHEN L, GUO F X, et al. Effect of residual stress on fatigue crack propagation rate of U75V heavy rail steel[J]. Heat Treatment of Metals, 2017, 42(6): 23-27 (in Chinese).
|