Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (18): 229919.doi: 10.7527/S1000-6893.2024.29919
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles
Liaojun YAO1,2(), Jingchao WEI2, Xiangming CHEN2, Mingyue CHUAI1, Hanyue LI1, Licheng GUO1
Received:
2023-11-27
Revised:
2024-02-21
Accepted:
2024-05-23
Online:
2024-06-04
Published:
2024-05-30
Contact:
Liaojun YAO
E-mail:L.Yao@hit.edu.cn
Supported by:
CLC Number:
Liaojun YAO, Jingchao WEI, Xiangming CHEN, Mingyue CHUAI, Hanyue LI, Licheng GUO. Critical discussions on mode I fatigue delamination with large⁃scale fibre bridging in composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 229919.
1 | 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报, 2022, 39(9): 4179-4186. |
XING L Y, LI Y F, CHEN X B. Status and role of the advanced composite materials in the development of aviation equipment[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4179-4186 (in Chinese). | |
2 | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. |
DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). | |
3 | KHAN R. Delamination growth in composites under fatigue loading[D]. Delft: TU Delft, 2013. |
4 | 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 522509. |
ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522509 (in Chinese). | |
5 | PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds-A critical review[J]. Engineering Fracture Mechanics, 2013, 112-113: 72-96. |
6 | BRIAN L V BAK, CARLOS S, ALBERT T, et al. Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods[J]. Applied Mechanics Reviews, 2014, 66(6): 060803. |
7 | Federal Aviation Administration. Composite aircraft structure : No: 20-107B [S].Washington,D.C.:FAA, 2009. |
8 | BRUNNER A J, MURPHY N, PINTER G. Development of a standardized procedure for the characterization of interlaminar delamination propagation in advanced composites under fatigue mode I loading conditions[J]. Engineering Fracture Mechanics, 2009, 76(18): 2678-2689. |
9 | STELZER S, BRUNNER A J, ARGÜELLES A, et al. Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: Development of a standardized test procedure[J]. Composites Science and Technology, 2012, 72(10): 1102-1107. |
10 | STELZER S, BRUNNER A J, ARGÜELLES A, et al. Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: Results from ESIS TC4 round-robins[J]. Engineering Fracture Mechanics, 2014, 116: 92-107. |
11 | MURRI G B. Effect of data reduction and fiber-bridging on Mode I delamination characterization of unidirectional composites[J]. Journal of Composite Materials, 2014, 48(19): 2413-2424. |
12 | BLANCO N, GAMSTEDT E K, ASP L E, et al. Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading[J]. International Journal of Solids and Structures, 2004, 41(15): 4219-4235. |
13 | KHAN R, ALDERLIESTEN R, BADSHAH S, et al. Effect of stress ratio or mean stress on fatigue delamination growth in composites: Critical review[J]. Composite Structures, 2015, 124: 214-227. |
14 | JONES R, KINLOCH A J, HU W. Cyclic-fatigue crack growth in composite and adhesively-bonded structures: The FAA slow crack growth approach to certification and the problem of similitude[J]. International Journal of Fatigue, 2016, 88: 10-18. |
15 | CANO A J, SALAZAR A, RODRÍGUEZ J. Evaluation of different crack driving forces for describing the fatigue crack growth behaviour of PET-G[J]. International Journal of Fatigue, 2018, 107: 27-32. |
16 | RANS C, ALDERLIESTEN R, BENEDICTUS R. Misinterpreting the results: How similitude can improve our understanding of fatigue delamination growth[J]. Composites Science and Technology, 2011, 71(2): 230-238. |
17 | DONOUGH M J, GUNNION A J, ORIFICI A C, et al. Scaling parameter for fatigue delamination growth in composites under varying load ratios[J]. Composites Science and Technology, 2015, 120: 39-48. |
18 | ALDERLIESTEN R C. How proper similitude can improve our understanding of crack closure and plasticity in fatigue[J]. International Journal of Fatigue, 2016, 82(P2): 263-273. |
19 | PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. On the physical interpretation of the R-ratio effect and the LEFM parameters used for fatigue crack growth in adhesive bonds[J]. International Journal of Fatigue, 2017, 97: 162-176. |
20 | YAO L J, ALDERLIESTEN R C, BENEDICTUS R. Interpreting the stress ratio effect on delamination growth in composite laminates using the concept of fatigue fracture toughness[J]. Composites Part A Applied Science and Manufacturing, 2015, 78: 135-142. |
21 | YAO L J, ALDERLIESTEN R C, BENEDICTUS R. The effect of fibre bridging on the Paris relation for mode I fatigue delamination growth in composites[J]. Composite Structures, 2016, 140: 125-135. |
22 | FARMAND-ASHTIANI E, CUGNONI J, BOTSIS J. Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite[J]. International Journal of Solids and Structures, 2015, 55: 58-65. |
23 | KHAN R. Fiber bridging in composite laminates: A literature review[J]. Composite Structures, 2019, 229: 111418. |
24 | AIROLDI A, DÁVILA C G. Identification of material parameters for modelling delamination in the presence of fibre bridging[J]. Composite Structures, 2012, 94(11): 3240-3249. |
25 | YAO L J, LIU J R, LYU Z M, et al. Damage mechanism investigation and a prediction model for delamination with fibre bridging in composites[J]. Engineering Fracture Mechanics, 2023, 281: 109079. |
26 | 姚辽军. 复合材料层间Ⅰ型静态及疲劳断裂机理研究[D]. 西安: 西北工业大学, 2016. |
YAO L J. Mode Ⅰ quasi-static and fatigue delamination growth in composite laminates[D].Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
27 | HOJO M, ANDO T, TANAKA M, et al. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue, 2006, 28(10): 1154-1165. |
28 | KHAN R, ALDERLIESTEN R, YAO L J, et al. Crack closure and fibre bridging during delamination growth in carbon fibre/epoxy laminates under mode I fatigue loading[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 201-211. |
29 | YAO L J, ALDERLIESTEN R C, JONES R, et al. Delamination fatigue growth in polymer-matrix fibre composites: A methodology for determining the design and lifing allowables[J]. Composite Structures, 2018, 196: 8-20. |
30 | YAO L J, CHUAI M Y, LYU Z M, et al. A proposal for similitude in characterizing fatigue delamination behavior with fibre bridging of carbon-fibre reinforced polymer composites[J]. Engineering Fracture Mechanics, 2024, 295: 109756. |
31 | MICHEL S, MURPHY N, KINLOCH A J, et al. On cyclic-fatigue crack growth in carbon-fibre-reinforced epoxy–polymer composites[J]. Polymers, 2024, 16(3): 435. |
32 | ZHAO L B, GONG Y, ZHANG J Y, et al. A novel interpretation of fatigue delamination growth behavior in CFRP multidirectional laminates[J]. Composites Science and Technology, 2016, 133: 79-88. |
33 | FARMAND-ASHTIANI E, CUGNONI J, BOTSIS J. Effects of large scale bridging in load controlled fatigue delamination of unidirectional carbon-epoxy specimens[J]. Composites Science and Technology, 2016, 137: 52-59. |
34 | GREGORY J R, SPEARING S M. A fiber bridging model for fatigue delamination in composite materials[J]. Acta Materialia, 2004, 52(19): 5493-5502. |
35 | JONES R, KINLOCH A J, MICHOPOULOS J G, et al. Delamination growth in polymer-matrix fibre composites and the use of fracture mechanics data for material characterisation and life prediction[J]. Composite Structures, 2017, 180: 316-333. |
36 | JENSEN S M, BAK B L V, BENDER J J, et al. Transient delamination growth in GFRP laminates with fibre bridging under variable amplitude loading in G-control[J]. Composites Part B, 2021, 225: 109296. |
37 | JENSEN S M, BAK B L V, BENDER J J, et al. Transition-behaviours in fatigue-driven delamination of GFRP laminates following step changes in block amplitude loading[J]. International Journal of Fatigue, 2021, 144: 106045. |
38 | YAO L J, ALDERLIESTEN R, ZHAO M Y, et al. Bridging effect on mode I fatigue delamination behavior in composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 63: 103-109. |
39 | YAO L J, ALDERLIESTEN R C, ZHAO M Y, et al. Discussion on the use of the strain energy release rate for fatigue delamination characterization[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 65-72. |
40 | YAO L J, CUI H, ALDERLIESTEN R C, et al. Thickness effects on fibre-bridged fatigue delamination growth in composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 21-28. |
41 | YAO L J, SUN Y, GUO L C, et al. A modified Paris relation for fatigue delamination with fibre bridging in composite laminates[J]. Composite Structures, 2017, 176: 556-564. |
42 | YAO L J, SUN Y, GUO L C, et al. A validation of a modified Paris relation for fatigue delamination growth in unidirectional composite laminates[J]. Composites Part B: Engineering, 2018, 132: 97-106. |
43 | YAO L J, CUI H, SUN Y, et al. Fibre-bridged fatigue delamination in multidirectional composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 175-186. |
44 | ALDERLIESTEN R C, BRUNNER A J, PASCOE J A. Cyclic fatigue fracture of composites: What has testing revealed about the physics of the processes so far?[J]. Engineering Fracture Mechanics, 2018, 203: 186-196. |
45 | BRUNNER A J. Fracture mechanics testing of fiber-reinforced polymer composites: The effects of the “human factor” on repeatability and reproducibility of test data[J]. Engineering Fracture Mechanics, 2022, 264: 108340. |
46 | MUJTABA A, STELZER S, BRUNNER A J, et al. Thoughts on the scatter seen in cyclic Mode I fatigue delamination growth in DCB tests[J]. Composite Structures, 2017, 160: 1329-1338. |
47 | JONES R, PENG D, SINGH RAMAN R K, et al. Thoughts on two approaches for accounting for the scatter in fatigue delamination growth curves[J]. Composite Structures, 2021, 258: 113175. |
48 | YAO L J, CHUAI M Y, LI H Y, et al. Temperature effects on fatigue delamination behavior in thermoset composite laminates[J]. Engineering Fracture Mechanics, 2023, 295: 109799. |
49 | HOJO M, TANAKA K, GUSTAFSON C G, et al. Effect of stress ratio on near-threshold propagation of delimination fatigue cracks in unidirectional CFRP[J]. Composites Science and Technology, 1987, 29(4): 273-292. |
50 | ATODARIA D R, PUTATUNDA S K, MALLICK P K. Fatigue crack growth model and mechanism of a random fiber SMC composite[J]. Polymer Composites, 1999, 20(2): 240-249. |
51 | KHAN R, ALDERLIESTEN R, BENEDICTUS R. Two-parameter model for delamination growth under mode I fatigue loading (Part B: Model development)[J]. Composites Part A: Applied Science and Manufacturing, 2014, 65: 201-210. |
52 | YAO L J, CUI H, GUO L C, et al. A novel total fatigue life model for delamination growth in composite laminates under generic loading[J]. Composite Structures, 2021, 258: 113402. |
53 | YAO L J, CHUAI M Y, LIU J R, et al. Fatigue delamination behavior in composite laminates at different stress ratios and temperatures[J]. International Journal of Fatigue, 2023, 175: 107830. |
[1] | ZHAO Libin, GONG Yu, ZHANG Jianyu. A survey on delamination growth behavior in fiber reinforced composite laminates [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522509-522509. |
[2] | DENG Jian, ZHOU Guangming, YIN Qiaozhi, XIANG Chao, CAI Deng'an. Progressive damage analysis of double-strap bonding repaired laminates under buckling compression [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(5): 1526-1535. |
[3] | ZHANG Long, WANG Bo, JIAO Guiqiong, HUANG Tao. Influence of Fiber Bridging on Mode I Interlaminar Fracture Toughness of Composites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(4): 817-825. |
[4] | Cheng Xiaoquan;Zou Jian;Zhang Jikui;Li Zhengneng. Properties of Stitched Composite Laminates—Fatigue Performance of Composite Laminates with an Open-hole [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(5): 867-871. |
[5] | SUN Xian-nian;ZHENG Chang-liang. Advances on Modeling Through-the-thickness Reinforcement of Laminated Composite by z-pinning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(6): 1194-1202. |
[6] | ZHANG Shuang;WANG Dong;LI Zheng-neng;KOU Chang-he;ZHANG Yi-ning. Parameterized Simulation for Composite Laminates with Single Mechanically Fastened Joint Based on ANSYS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(6): 1088-1091. |
[7] | YAN Ying;ZENG Dong. Study on the Post-Impact Compressive Strength of Composite Lamin ates [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2003, 24(2): 137-139. |
[8] | ZHANG Yan hui;LI Wei ji . MULTIOBJECTIVE OPTIMUM DESIGN APPROACH BASED ON FUZZY IMPORTANCE [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1999, 20(4): 68-70. |
[9] | Shu Xiaoping . REFINED DELAMINATION MODEL FOR LAMINATED BEAMS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1998, 19(2): 236-239. |
[10] | Zhang Kaida. FATIGUE DAMAGE CUMULATION AND LIFE PREDICTION FOR CARBON/BISMALEIMIDE COMPOSITE LAMINATES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1997, 18(5): 623-624. |
[11] | Zhong Weihong;Chen Changqi;Kou Changhe;Zheng Ruiqi. EXPERIMENTAL STUDY ON EFFECTS ON DELAMINATION NEAR CRACK OF ARALL BY RESIDUAL STRESS UNDER FATIGUE AND STATIC LOADS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1996, 17(2): 196-201. |
[12] | Shu Xiao-ping. THE IMPROVEMENT IN SMALL DEFLECTION THEORY OF COMPOSITE LAMINATES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(7): 411-414. |
[13] | Ding Xi-hong;Zhou Li;Gu Hui-zhi. TRANSIENT RESPONSE OF LAYERED COMPOSITE PLATES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1992, 13(9): 498-502. |
[14] | Zhu Jufen;Wang Hai;Cheng Wanzhi. SECONDARY BIFURCATION AND FAILURE STUDY OF COMPOSITE LAMINATES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1991, 12(9): 452-458. |
[15] | Zheng Chuanchao;Zhang Kaida;Liu Xuehui. THE INVESTIGATION OF DAMAGE IN LAMINATES DUE TO LOW VELOCITY IMPACT [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1991, 12(12): 606-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341