1 |
冯强, 童锦艳, 郑运荣, 等. 燃气涡轮叶片的服役损伤与修复[J]. 中国材料进展, 2012, 31(12): 21-34.
|
|
FENG Q, TONG J Y, ZHENG Y R, et al. Service induced degradation and rejuvenation of gas turbine blades[J]. Materials China, 2012, 31(12): 21-34 (in Chinese).
|
2 |
LI D W, LIU J X, SUN Y T, et al. Microstructure and mechanical degradation of K403 Ni-based superalloy from ultra-long-term serviced turbine blade[J]. Journal of Alloys and Compounds, 2023, 957: 170378.
|
3 |
陈操, 韩雷, 张钰, 等. 镍基合金涡轮叶片的服役损伤机理与性能衰减[J]. 航空材料学报, 2021, 41(4): 96-108.
|
|
CHEN C, HAN L, ZHANG Y, et al. Service damage mechanism and performance attenuation of nickel-based alloy turbine blades[J]. Journal of Aeronautical Materials, 2021, 41(4): 96-108 (in Chinese).
|
4 |
ACHARYA M V, FUCHS G E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys[J]. Materials Science and Engineering: A, 2004, 381(1-2): 143-153.
|
5 |
HAN L, LI P, YU S, et al. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism[J]. International Journal of Fatigue, 2022, 154: 106558.
|
6 |
范永升, 杨晓光, 石多奇, 等. 服役涡轮叶片筏化判废:定量表征及阈值确定[J]. 航空学报, 2022, 43(9): 625100.
|
|
FAN Y S, YANG X G, SHI D Q, et al. Rafting-waste judgement od serviced turbine blades: quantitative characterization and threshold determination[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625100 (in Chinese).
|
7 |
ELLIS B, HEYNS P S, SCHMIDT S. A hybrid framework for remaining useful life estimation of turbomachine rotor blades[J]. Mechanical Systems and Signal Processing, 2022, 170: 108805.
|
8 |
雷世英, 孙见忠, 刘赫. 涡轮叶片累积损伤指数模型及服役可靠性评估[J]. 航空学报, 2022, 43(3): 225064.
|
|
LEI S Y, SUN J Z, LIU H. Cumulative damage index model and service reliability evaluation of turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 225064 (in Chinese).
|
9 |
WANG J, ZHANG J, ZHAO W, et al. Lifetime prediction of turbine blade of turbocharger for diesel engine based on fatigue and creep damage model[C]∥2021 Global Reliability and Prognostics and Health Management. 2021: 1-5.
|
10 |
车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14): 304-312.
|
|
CHE C C, WANG H W, NI X M, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering, 2021, 57(14): 304-312 (in Chinese).
|
11 |
QUINTANAR-GAGO D A, NELSON P F, DÍAZ-SÁNCHEZ Á, et al. Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network[J]. Reliability Engineering & System Safety, 2021, 207: 107329.
|
12 |
QATTAN N A, AL-BAHI A M, KADA B. ANN-based failure modeling of T-56 engine turbine[C]∥2023 Annual Reliability and Maintainability Symposium. 2023: 23-26.
|
13 |
LIU H, SUN J, LEI S, et al. In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data[J]. Propulsion and Power Research, 2021, 10(4): 360-373.
|
14 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[DB/OL]. arXiv preprint: 1703.03400, 2017.
|
15 |
ANDRYCHOWICZ M, DENIL M, GOMEZ S, et al. Learning to learn by gradient descent by gradient descent[DB/OL]. arXiv preprent: 1606.04474, 2016.
|
16 |
HOUTHOOFT R, CHEN R Y, ISOLA P, et al. Evolved policy gradients[DB/OL]. arXiv preprint: 1802.04821, 2018.
|
17 |
SUNG F, YANG Y, ZHANG L, et al. Learning to compare: Relation network for few-shot learning[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 18-23.
|
18 |
RUSU A, RAO D, SYGNOWSKI J, et al. Meta-learning with latent embedding optimization[DB/OL]. arXiv preprint: 1807.05960, 2019.
|
19 |
周登极, 张会生, 苏明. 一种燃气轮机涡轮叶片蠕变损伤评估模型及其应用[J]. 动力工程学报, 2015, 35(12): 964-969.
|
|
ZHOU D J, ZHANG H S, SU M. An evaluation model for the creep damage of gas turbine blades and its application[J]. Journal of Chinese Society of Power Engineering, 2015, 35(12): 964-969 (in Chinese).
|
20 |
CHOI J Y, LEE B. Combining LSTM network ensemble via adaptive weighting for improved time series forecasting[J]. Mathematical Problems in Engineering, 2018, 2018: 2470171.
|
21 |
黄炎, 葛思源, 翟慕赛, 等. 环境温度影响下基于LSTM神经网络识别结构损伤[J]. 计算力学学报, 2024, 41(2): 248-255.
|
|
HUANG Y, GE S Y, ZHAI M S, et al. Structural damage identification based on LSTM neural networks under ambient temperature variations[J]. Chinese Journal of Computational Mechanics, 2024, 41(2): 248-255 (in Chinese).
|
22 |
CHOE D, KIM H, KIM M. Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades[J]. Renewable Energy, 2021,174: 218-235.
|
23 |
GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232.
|