1 |
BROUCKE R A. Long-term third-body effects via double averaging[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 27-32.
|
2 |
DE ALMEIDA PRADO A F B. Third-body perturbation in orbits around natural satellites[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 33-40.
|
3 |
DOMINGOS R C, DE MORAES R V, DE ALMEIDA PRADO A F B. Third-body perturbation in the case of elliptic orbits for the disturbing body[J]. Mathematical Problems in Engineering, 2008, 2008: 763654.
|
4 |
ROSCOE C W T, VADALI S R, ALFRIEND K T. Third-body perturbation effects on satellite formations[J]. The Journal of the Astronautical Sciences, 2013, 60(3): 408-433.
|
5 |
MA Y C, HE Y C, XU M, et al. Global searches of frozen orbits around an oblate Earth-like planet[J]. Astrodynamics, 2022, 6(3): 249-268.
|
6 |
LARA M. Simplified equations for computing science orbits around planetary satellites[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 172-181.
|
7 |
LARA M, PALACIÁN J F. Hill problem analytical theory to the order four: Application to the computation of frozen orbits around planetary satellites[J]. Mathematical Problems in Engineering, 2009, 2009: 753653.
|
8 |
GIACAGLIA G E O, MURPHY J P, FELSENTREGER T L. A semi-analytic theory for the motion of a lunar satellite[J]. Celestial Mechanics, 1970, 3(1): 3-66.
|
9 |
FELSENTREGER T L GIACAGLIA G E O, MURPHY J P, et al. The motion of a satellite of the moon: NASA-TM-X-55295[R]. Washington, D.C.: NASA, 1967.
|
10 |
NIE T, GURFIL P. Lunar frozen orbits revisited[J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130(10): 61.
|
11 |
D’AVANZO P, TEOFILATTO P, ULIVIERI C. Long-term effects on lunar orbiter[J]. Acta Astronautica, 1997, 40(1): 13-20.
|
12 |
ABAD A, ELIPE A, TRESACO E. Analytical model to find frozen orbits for a lunar orbiter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 888-898.
|
13 |
FOLTA D, QUINN D. Lunar frozen orbits: AIAA-2006-6749 [R]. Reston: AIAA, 2006.
|
14 |
CINELLI M, ORTORE E, MENGALI G, et al. Lunar orbits for telecommunication and navigation services[J]. Astrodynamics, 2024, 8(1): 209-220.
|
15 |
ELY T A. Stable constellations of frozen elliptical inclined lunar orbits[J]. The Journal of the Astronautical Sciences, 2005, 53(3): 301-316.
|
16 |
ELY T A, LIEB E. Constellations of elliptical inclined lunar orbits providing polar and global coverage[J]. The Journal of the Astronautical Sciences, 2006, 54(1): 53-67.
|
17 |
GRAMLING J J, NGAN Y P, QUINN D A, et al. A lunar communications and navigation satellite concept for the robotic lunar exploration program: AIAA-2006-5364[R]. Reston: AIAA, 2006.
|
18 |
HOWELL K C, BREAKWELL J V. Almost rectilinear halo orbits[J]. Celestial Mechanics, 1984, 32(1): 29-52.
|
19 |
WHITLEY R, DAVIS D C, BURKE L M, et al. Earth-Moon near rectilinear halo and butterfly orbits for lunar surface exploration[C]∥ AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2018.
|
20 |
OLESON S R, BHASIN K B, MCGUIRE M L, et al. Advance communications and navigation satellite conceptual design for lunar network-centric operations: AIAA-2009-6719[R]. Reston: AIAA, 2009.
|
21 |
CUTTING G H, FRAUTNICK J C, BORN G H. Orbit analysis for Seasat-A[J]. Journal of the Astronautical Sciences, 1978, 26: 315-342.
|