Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (21): 29796.doi: 10.7527/S1000-6893.2023.29796
• Reviews •
Jun ZHANG1(), Yifan JIANG1, Song CHEN2, Shuaihui LI3
Received:
2023-10-30
Revised:
2023-11-17
Accepted:
2023-12-05
Online:
2023-12-20
Published:
2023-12-18
Contact:
Jun ZHANG
E-mail:jun.zhang@buaa.edu.cn
Supported by:
CLC Number:
Jun ZHANG, Yifan JIANG, Song CHEN, Shuaihui LI. Overview of aerodynamic drag calculation and reduction design for very low Earth orbit satellites[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 29796.
Table 3
Optimal profiles at varying points along Pareto-optimal fronts for satellites with 1∶2 and 1∶6 aspect ratios[95]
1∶2 shape | Volume | CD | 1∶6 shape | Volume | CD | ||||
---|---|---|---|---|---|---|---|---|---|
Value/m3 | Precentage reduction/% | Value | Precentage reduction/% | Value/m3 | Precentage reduction/% | Value | Precentage reduction/% | ||
![]() | 0.50 | 0 | 2.446 | 0 | ![]() | 0.38 | 0 | 2.954 | 0 |
0.45 | 10 | 2.168 | 11.4 | 0.34 | 10 | 2.480 | 16.0 | ||
0.40 | 20 | 2.060 | 15.8 | 0.30 | 20 | 2.269 | 23.2 | ||
0.35 | 30 | 1.992 | 18.6 | 0.26 | 30 | 2.114 | 28.4 | ||
0.30 | 40 | 1.945 | 20.5 | 0.23 | 40 | 1.985 | 32.8 | ||
0.25 | 50 | 1.926 | 21.2 | 0.19 | 50 | 1.933 | 34.6 |
1 | ASLANOV V S. Chaotic attitude dynamics of a LEO satellite with flexible panels[J]. Acta Astronautica, 2021, 180: 538-544. |
2 | CRISP N H, ROBERTS P C E, ROMANO F, et al. System modelling of very low Earth orbit satellites for Earth observation[J]. Acta Astronautica, 2021, 187: 475-491. |
3 | MCCREARY L. A satellite mission concept for high drag environments[J]. Aerospace Science and Technology, 2019, 92: 972-989. |
4 | LLOP J V, ROBERTS P C E, HAO Z, et al. Very low earth orbit mission concepts for earth observation: Benefits and challenges[C]∥Reinventing Space Conference 2014. Reston: AIAA, 2014. |
5 | LIVADIOTTI S, CRISP N H, ROBERTS P C E, et al. A review of gas-surface interaction models for orbital aerodynamics applications[J]. Progress in Aerospace Sciences, 2020, 119: 100675. |
6 | HAIGH S J, LYONS R E, OIKO V T A, et al. Discoverer-radical redesign of earth observation satellites for sustained operation at significantly lower altitudes[C]∥Proceedings of the International Astronautical Congress. Pairs: Discoverer Publications, 2017, 68: 9254-9262. |
7 | ZHANG S Y, YANG J Y, LI C, et al. Mechanism of capture section affecting an intake for atmosphere-breathing electric propulsion[J]. Chinese Journal of Aeronautics, 2024, 37(1): 51-63. |
8 | ROBERTS P, CRISP N, OIKO V T A, et al. Keynote: DISCOVERER-Making commercial satellite operations in very low earth orbit a reality[C]∥70th International Astronautical Congress. Pairs: IAF, 2019. |
9 | CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 100619. |
10 | HU Y D, LU Z L, LING K V, et al. Multiplexed MPC attitude control of a moving mass satellite using dual-rate piecewise affine model[J]. Aerospace Science and Technology, 2022, 128: 107778. |
11 | ROBERTS P C E, CRISP N H, OIKO V T A, et al. DISCOVERER-Making Commercial Satellite Operations in Very Low Earth Orbit a Reality[C]∥70th International Astronautical Congress. Washington, D.C.: IAF, 2019. |
12 | SHAO A, WERTZ J R, KOLTZ E A. Quantifying the cost reduction potential for earth observation satellites[C]∥HATTON S. Proceedings of the 12th Reinventing Space Conference. Cham: Springer, 2017: 199-210. |
13 | 魏德宾, 操昱, 杨力, 等. 一种基于时空等级的LEO卫星网络路由策略[J]. 航空学报, 2023, 44(16): 327994. |
WEI D B, CAO Y, YANG L, et al. A routing strategy for LEO satellite network based on space-time-level[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 327994 (in Chinese). | |
14 | WOOD M, CHEN W H. Attitude control of magnetically actuated satellites with an uneven inertia distribution[J]. Aerospace Science and Technology, 2013, 25(1): 29-39. |
15 | 何慧东. 日本 “超低轨道技术试验卫星” 任务及应用[J]. 国际太空, 2018(9): 50-53. |
HE H D. Japan’s super low altitude test satellite mission and application[J]. Space International, 2018(9): 50-53 (in Chinese). | |
16 | CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research)[J]. Acta Astronautica, 2021, 180: 85-99. |
17 | OLIVEIRA D M, ZESTA E, MEHTA P M, et al. The current state and future directions of modeling thermosphere density enhancements during extreme magnetic storms[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 764144. |
18 | 雷亚珂, 张楠, 高铭阳, 等. SLATS超低轨卫星飞行任务及启示[C]∥第八届中国(国际)商业航天高峰论坛. 北京: 中国宇航学会, 2022: 16-22. |
LEI Y K, ZHANG N, GAO M Y, et al. Very low Earth orbit satellite SLATS mission and its inspiration[C]∥Proceedings of the 8th China (International) Commercial Space Forum. Beijing: Chinese Society of Astronautic, 2022: 16-22 (in Chinese). | |
19 | 王娟. “长二丁” 一箭三星成功发射世界首颗量子科学实验卫星[J]. 中国航天, 2016(9): 13. |
WANG J. “Changerding”has successfully launched the world’s first quantum science experiment satellite with three stars[J]. Aerospace China, 2016(9): 13 (in Chinese). | |
20 | FEARN D G. Economical remote sensing from a low altitude with continuous drag compensation[J]. Acta Astronautica, 2005, 56(5): 555-572. |
21 | ROMANO F, ESPINOSA-OROZCO J, PFEIFFER M, et al. Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)[J]. Acta Astronautica, 2021, 187: 225-235. |
22 | HE C Y, YANG Y, CARTER B, et al. Review and comparison of empirical thermospheric mass density models[J]. Progress in Aerospace Sciences, 2018, 103: 31-51. |
23 | CALABIA A, JIN S G. Assessment of conservative force models from GRACE accelerometers and precise orbit determination[J]. Aerospace Science and Technology, 2016, 49: 80-87. |
24 | AVANZINI G, DE ANGELIS E L, GIULIETTI F. Two-timescale magnetic attitude control of Low-Earth-Orbit spacecraft[J]. Aerospace Science and Technology, 2021, 116: 106884. |
25 | WANG E Y, QIU S, LIU M, et al. Event-triggered adaptive terminal sliding mode tracking control for drag-free spacecraft inner-formation with full state constraints[J]. Aerospace Science and Technology, 2022, 124: 107524. |
26 | GUILHERME M S, LEITE FILHO W C, THEIL S. Strategies for in-orbit calibration of drag-free control systems[J]. Aerospace Science and Technology, 2008, 12(5): 365-375. |
27 | JIN X H, HUANG F, CHENG X L, et al. Monte Carlo simulation for aerodynamic coefficients of satellites in Low-Earth Orbit[J]. Acta Astronautica, 2019, 160: 222-229. |
28 | MOSTAZA PRIETO D, GRAZIANO B P, ROBERTS P C E. Spacecraft drag modelling[J]. Progress in Aerospace Sciences, 2014, 64: 56-65. |
29 | LI Z H, PENG A P, MA Q, et al. Gas-kinetic unified algorithm for computable modeling of Boltzmann equation and application to aerothermodynamics for falling disintegration of uncontrolled Tiangong-No.1 spacecraft[J]. Advances in Aerodynamics, 2019, 1(1): 4. |
30 | QU Q Y, XU M, LUO T. Design concept for In-Drag Sail with individually controllable elements[J]. Aerospace Science and Technology, 2019, 89: 382-391. |
31 | VALLADO D A, FINKLEMAN D. A critical assessment of satellite drag and atmospheric density modeling[J]. Acta Astronautica, 2014, 95: 141-165. |
32 | ANDREUSSI T, FERRATO E, GIANNETTI V. A review of air-breathing electric propulsion: from mission studies to technology verification[J]. Journal of Electric Propulsion, 2022, 1(1): 31. |
33 | MARCOS F, BURKE W, LAI S. Thermospheric space weather modeling[C]∥Proceedings of the 38th Plasmadynamics and Lasers Conference. Reston: AIAA, 2007. |
34 | MARCOS F, BOWMAN B, SHEEHAN R. Accuracy of earth’s thermospheric neutral density models[C]∥AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2006. |
35 | DOORNBOS E, KLINKRAD H. Modelling of space weather effects on satellite drag[J]. Advances in Space Research, 2006, 37(6): 1229-1239. |
36 | MOE K, MOE M M. Gas-surface interactions in low-earth orbit[C]∥AIP Conference Proceedings. Melville: AIP, 2011, 1333: 1313-1318. |
37 | COOK G E. Satellite drag coefficients[J]. Planetary and Space Science, 1965, 13(10): 929-946. |
38 | MOE K, MOE M M. Gas-surface interactions and satellite drag coefficients[J]. Planetary and Space Science, 2005, 53(8): 793-801. |
39 | DAVID M P. Characterisation and applications of aerodynamic torques on satellites[D]. Manchester: University of Manchester, 2017 |
40 | JOSEP V L. Spacecraft flight in the atmosphere[D]. Cranfield: Cranfield University, 2014. |
41 | STORCH J A. Aerodynamic disturbances on spacecraft in free-molecular flow: SMC-TR-03-06[R]. El Segundo: The Aerospace Corporation, 2002. |
42 | BIRD G A. Collisionless flows[M]∥Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Oxford University Press, 1994: 148-182. |
43 | ZHENG P, WU J J, ZHANG Y, et al. An atmosphere-breathing propulsion system using inductively coupled plasma source[J]. Chinese Journal of Aeronautics, 2023, 36(5): 223-238. |
44 | TISAEV M, FERRATO E, GIANNETTI V, et al. Air-breathing electric propulsion: Flight envelope identification and development of control for long-term orbital stability[J]. Acta Astronautica, 2022, 191: 374-393. |
45 | SENTMAN L H. Comparison of the exact and approximate methods for predicting free molecule aerodynamic coefficients[J]. ARS Journal, 1961, 31(11): 1576-1579. |
46 | SENTMAN L H. Free molecule flow theory and its application to the determination of aerodynamic forces[M]. Sunnyvale: Lockheed Missiles & Space Company, 1961. |
47 | CHAMBRE P A, SCHAAF S A. Flow of rarefied gases[M]. Princeton: Princeton University Press, 1961. |
48 | 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003: 148-50. |
SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003: 148-150 (in Chinese). | |
49 | FULLER J D, TOLSON R H. Improved method for the estimation of spacecraft free-molecular aerodynamic properties[J]. Journal of Spacecraft and Rockets, 2009, 46(5): 938-948. |
50 | FULLER J, TOLSON R. Program for the estimation of spacecraft aerodynamic properties[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009:728. |
51 | REGAN F J, ANANDAKRISHNAN S M. Dynamics of Atmospheric re-Entry[M]. Reston: AIAA Inc., 1993. |
52 | GRAZIANO BENJAMIN P. Computational modelling of aerodynamic disturbances on spacecraft within a concurrent engineering framework[D]. Cranfield: Cranfield University, 2007. |
53 | DAVIS D H. Monte Carlo calculation of molecular flow rates through a cylindrical elbow and pipes of other shapes[J]. Journal of Applied Physics, 1960, 31(7): 1169-1176. |
54 | TUER T W, SPRINGER G S. A test particle Monte Carlo method[J]. Computers & Fluids, 1973, 1(4): 399-417. |
55 | 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的试验粒子Monte Carlo方法 [J].航空学报, 2017, 38(5): 120625. |
JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo method for rapid prediction of aerodynamic properties of spacecraft in lower LEO [J].Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120625 (in Chinese). | |
56 | BIRD G A. Monte Carlo simulation of gas flows[J]. Annual Review of Fluid Mechanics, 1978, 10: 11-31. |
57 | BIRD G A. Molecular gas dynamics [R]. Washington, D.C.: NASA, 1976. |
58 | BIRD G A. Forty years of DSMC, and now?[C]∥AIP Conference Proceedings. College Park: AIP, 2001, 585: 372-380. |
59 | PLIMPTON S J, MOORE S G, BORNER A, et al. Direct simulation Monte Carlo on petaflop supercomputers and beyond[J]. Physics of Fluids, 2019, 31(8): 086101. |
60 | PALHARINI R C. Atmospheric reentry modelling using an open-source DSMC code[D]. Strathclyde: University Of Strathclyde, 2014. |
61 | 黄飞, 沈清, 程晓丽, 等. 一种DSMC分子仿真下的权因子预定义方法[J]. 航空学报, 2014, 35(8): 2174-2181. |
HUANG F, SHEN Q, CHENG X L, et al. A new predefined method of particle weight in DSMC molecular simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2174-2181 (in Chinese). | |
62 | MUNGIGUERRA S, ZUPPARDI G, SAVINO R. Rarefied aerodynamics of a deployable re-entry capsule[J]. Aerospace Science and Technology, 2017, 69: 395-403. |
63 | VOTTA R, SCHETTINO A, BONFIGLIOLI A. Hypersonic high altitude aerothermodynamics of a space re-entry vehicle[J]. Aerospace Science and Technology, 2013, 25(1): 253-265. |
64 | ANDREWS S, BERTHOUD L. Characterising satellite aerodynamics in Very Low Earth Orbit inclusive of ion thruster plume-thermosphere/ionosphere interactions[J]. Acta Astronautica, 2020, 170: 386-396. |
65 | MA Q H, YANG C X, BRUNO D, et al. Molecular simulation of Rayleigh-Brillouin scattering in binary gas mixtures and extraction of the rotational relaxation numbers[J]. Physical Review E, 2021, 104(3): 035109. |
66 | LIU W B, ZHANG J B, JIANG Y Z, et al. DSMC study of hypersonic rarefied flow using the Cercignani-Lampis-Lord model and a molecular-dynamics-based scattering database[J]. Physics of Fluids, 2021, 33(7): 072003. |
67 | DENG J C, ZHANG J, LIANG T F, et al. A modified Cercignani-Lampis model with independent momentum and thermal accommodation coefficients for gas molecules scattering on surfaces[J]. Physics of Fluids, 2022, 34(10): 107108. |
68 | ANDRIC N, JENNY P. Molecular dynamics investigation of energy transfer during gas-surface collisions[J]. Physics of Fluids, 2018, 30(7): 077104. |
69 | REINHOLD J, VELTZKE T, WELLS B, et al. Molecular dynamics simulations on scattering of single Ar, N2, and CO2 molecules on realistic surfaces[J]. Computers & Fluids, 2014, 97: 31-39. |
70 | KNUDSEN M. Die molekulare Wärmeleitung der gase und der akkommodationskoeffizient[J]. Annalen Der Physik, 1911, 339(4): 593-656. |
71 | MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London Series I, 1879, 170: 231-256. |
72 | ZHANG J, LUAN P, DENG J C, et al. Theoretical derivation of slip boundary conditions for single-species gas and binary gas mixture[J]. Physical Review E, 2021, 104(5): 055103. |
73 | CERCIGNANI C, LAMPIS M. Kinetic models for gas-surface interactions[J]. Transport Theory and Statistical Physics, 1971, 1(2): 101-114. |
74 | LORD R G. Some further extensions of the Cercignani-Lampis gas-surface interaction model[J]. Physics of Fluids, 1995, 7(5): 1159-1161. |
75 | LORD R G. Application of the Cercignani-Lampis scattering kernel to direct simulation Monte Carlo calculations[C]∥Rarefied Gas Dynamics: Proceedings of the 17th International Symposium on Rarefied Gas Dynamics, 1990. Washington, D.C.: NASA/ADS, 1991: 1427-1433. |
76 | LORD R G. Some extensions to the Cercignani-Lampis gas-surface scattering kernel[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(4): 706-710. |
77 | WALKER A, MEHTA P, KOLLER J. Drag coefficient model using the cercignani-lampis-lord gas-surface interaction model[J]. Journal of Spacecraft and Rockets, 2014, 51(5): 1544-1563. |
78 | LIANG T F, NIE K Y, LI Q, et al. Advanced analytical model for orbital aerodynamic prediction in LEO[J]. Advances in Space Research, 2023, 71(1): 507-524. |
79 | JIANG Y F, ZHANG J, TIAN P, et al. Aerodynamic drag analysis and reduction strategy for satellites in Very Low Earth Orbit[J]. Aerospace Science and Technology, 2023, 132: 108077. |
80 | 李志辉, 吴俊林, 彭傲平, 等. 天宫飞行器低轨控空气动力特性一体化建模与计算研究[J]. 载人航天, 2015, 21(2): 106-114. |
LI Z H, WU J L, PENG A P, et al. Unified modeling and calculation of aerodynamics characteristics during low-orbit flying control of the TG vehicle[J]. Manned Spaceflight, 2015, 21(2): 106-114 (in Chinese). | |
81 | 靳旭红, 黄飞, 程晓丽, 等. 超低地球轨道卫星大气阻力预测与影响因素分析 [J].清华大学学报(自然科学版), 2020, 60(3): 219-226. |
JIN X H, HUANG F, CHENG X L, et al. Atmospheric drag on satellites flying in lower low-earth orbit [J].Journal of Tsinghua University, 2020, 60(3): 219-226 (in Chinese). | |
82 | 王晓亮, 姚小松, 高爽, 等. 超低轨卫星气动阻力特性[J]. 上海交通大学学报, 2022, 56(8): 1089-1100. |
WANG X L, YAO X S, GAO S, et al. Aerodynamic drag characteristics of ultra-low orbit satellites[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1089-1100 (in Chinese). | |
83 | KOPPENWALLNER G. Satellite aerodynamics and determination of thermospheric density and wind[C]∥AIP Conference Proceedings. College Park: AIP, 2011: 1307-12.10.1063/1.3562824. |
84 | JIN X H, CHENG X L, WANG B, et al. Predict aerodynamic drag of spacecraft in Very Low Earth Orbit using different gas-surface interaction models[J]. Aerospace China, 2021, 22(4): 35-41. |
85 | 胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程, 2016, 25(1): 10-18. |
HU L Y, ZHANG L H, CHENG X L, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering, 2016, 25(1): 10-18 (in Chinese). | |
86 | MARCH G, DOORNBOS E N, VISSER P N A M. High-fidelity geometry models for improving the consistency of CHAMP, GRACE, GOCE and Swarm thermospheric density data sets[J]. Advances in Space Research, 2019, 63(1): 213-238. |
87 | MARÍN C A, SEBASTIÃO I B, TAMRAZIAN S, et al. DSMC-SPARTA aerodynamic characterization of a deorbiting CubeSat[C]∥AIP Conference Proceedings-31st International Symposium on Rarefied Gas Dynamics: RGD31. College Park: AIP Publishing, 2019, 2132(1): 070024. |
88 | 郭晨林, 陈方, 赵艳彬, 等. 跨流区超低轨航天器快速气动力计算方法[J].上海航天(中英文), 2022, 39(5): 124-33. |
GUO C L, CHEN F, ZHAO Y B, et al. Fast aerodynamic calculation method for ultra-low orbit spacecrafts in multi-flow regions[J].Aerospace Shanghai, 2022, 39(5): 124-33 (in Chinese). | |
89 | 黄飞, 赵波, 程晓丽, 等. 低轨卫星的气动特性预测与分析[J]. 空间科学学报, 2015, 35(1): 69-76. |
HUANG F, ZHAO B, CHENG X L, et al. Numerical investigation of aerodynamics on low earth orbit satellite[J]. Chinese Journal of Space Science, 2015, 35(1): 69-76 (in Chinese). | |
90 | FUJITA K, NODA A. Rarefied aerodynamics of a super low altitude test satellite[C]∥41st AIAA Thermophysics Conference. Reston: AIAA, 2009: 3606. |
91 | YU S T, FAN C Z. Aerodynamic analysis and drag-reduction design for ultra-low-orbit satellite[J]. IOP Conference Series: Materials Science and Engineering, 2020, 887(1): 012013. |
92 | 周伟勇, 张育林, 刘昆. 超低轨航天器气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2): 342-348. |
ZHOU W Y, ZHANG Y L, LIU K. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. Journal of Astronautics, 2010, 31(2): 342-348 (in Chinese). | |
93 | PARK J H, MYONG R S, KIM D H, et al. Aerodynamic shape optimization of space vehicle in very-low-earth-orbit[C]∥Proceedings of the 29th International Symposium on Rarefied Gas Dynamics. College Park: AIP Publishing, 2014, 1628(1): 1331-1336. |
94 | WALSH J A, BERTHOUD L. Reducing spacecraft drag in Very Low Earth Orbit through shape optimisation[C]∥7th European Conference for Aeronautics and Aerospace Sciences. 2017. |
95 | WALSH J, BERTHOUD L, ALLEN C. Drag reduction through shape optimisation for satellites in Very Low Earth Orbit[J]. Acta Astronautica, 2021, 179: 105-121. |
96 | HILD F, TRAUB C, PFEIFFER M, et al. Optimisation of satellite geometries in Very Low Earth Orbits for drag minimisation and lifetime extension[J]. Acta Astronautica, 2022, 201: 340-352. |
97 | 胡鑫, 傅丹膺, 陈罗婧. 超低轨道细长体卫星减阻分析[C]∥北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集. 北京: 北京力学会, 2015: 190-197. |
HU X, FU D Y, CHEN L J. Drag reduction analysis of very-low orbit slender body satellite[C]∥Proceedings of the 21st Academic Annual Meeting of Beijing Society of Mechanics and Dynamics and the 22nd Academic Annual Meeting of Beijing Society of Vibration Engineering. Beijing: Beijing Society of Mechanics and Dynamics, 2015: 190-7 (in Chinese). | |
98 | 靳旭红, 黄飞, 程晓丽, 等. 内外流一体化航天器气动特性分析与减阻设计[J]. 宇航学报, 2017, 38(1): 10-17. |
JIN X H, HUANG F, CHENG X L, et al. Analysis of aerodynamic properties and drag-reduction design for spacecraft with an open orifice [J].Journal of Astronautics, 2017, 38(1): 10-17 (in Chinese). | |
99 | 沈清, 黄飞, 程晓丽, 等. 飞行器上层大气层空气动力特性探讨 [J]. 气体物理, 2021, 6(1): 1-9. |
SHEN Q, HUANG F, CHENG X L, et al. On characteristics of upper atmosphere aerodynamics of flying vehicles[J]. Physics of Gases, 2021, 6(1): 1-9 (in Chinese). |
[1] | JIN Xuhong, HUANG Fei, CHENG Xiaoli, SU Penghui. Effect of Maxwell gas-surface interaction models on flow characteristics and thermodynamic properties of rarefied hypersonic cavity flows [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 124118-124118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341