Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (18): 129682.doi: 10.7527/S1000-6893.2023.29682
• Fluid Mechanics and Flight Mechanics • Previous Articles
Haochen XIONG, Ruofan QIU, Xin HAN, Hao YAN, Tao ZHANG, Yancheng YOU()
Received:
2023-10-07
Revised:
2023-10-23
Accepted:
2023-11-14
Online:
2023-12-04
Published:
2023-12-01
Contact:
Yancheng YOU
E-mail:yancheng.you@xmu.edu.cn
Supported by:
CLC Number:
Haochen XIONG, Ruofan QIU, Xin HAN, Hao YAN, Tao ZHANG, Yancheng YOU. New method for detonation initiation induced by curved shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 129682.
1 | 姜宗林. 气体爆轰物理及其统一框架理论[M]. 北京: 科学出版社, 2020: 161-168. |
JIANG Z L. Gaseous detonation physics and its universal framework theory[M]. Beijing: Science Press, 2020: 161-168 (in Chinese). | |
2 | LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008. |
3 | ALEXANDER D C, SISLIAN J P, PARENT B. Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets[J]. AIAA Journal, 2006, 44(10): 2145-2155. |
4 | 刘卫东, 彭皓阳, 刘世杰, 等. 旋转爆震燃烧及应用研究进展[J]. 航空学报, 2023, 44(15): 528875. |
LIU W D, PENG H Y, LIU S J, et al. Research Progresses of rotating detonation combustion and its application[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528875 (in Chinese). | |
5 | 陈嘉豪, 张义宁, 杨晖, 等. 斜爆震发动机进气道与燃烧室一体化设计仿真研究[J]. 推进技术, 2018, 39(9): 1938-1947. |
CHEN J H, ZHANG Y N, YANG H, et al. Numerical simulation on integrated design inlet and combustion chamber of oblique detonation engine[J]. Journal of Propulsion Technology, 2018, 39(9): 1938-1947 (in Chinese). | |
6 | ASHFORD S A, EMANUEL G. Oblique detonation wave engine performance prediction[J]. Journal of Propulsion and Power, 1996, 12(2): 322-327. |
7 | SISLIAN J P, SCHIRMER H, DUDEBOUT R, et al. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets[J]. Journal of Propulsion and Power, 2001, 17(3): 599-604. |
8 | HIGGINS A J. Ram accelerators: Outstanding issues and new directions[J]. Journal of Propulsion and Power, 2006, 22(6): 1170-1187. |
9 | ROSATO D A, THORNTON M, SOSA J, et al. Stabilized detonation for hypersonic propulsion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2102244118. |
10 | 杨理, 岳连捷, 张新宇. 斜爆轰波的波角和法向速度-曲率关系初探[J]. 航空学报, 2020, 41(11): 123701. |
YANG L, YUE L J, ZHANG X Y. Preliminary study on wave angle and normal velocity-curvature relation of oblique detonation wave[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123701 (in Chinese). | |
11 | 滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学: 物理学 力学 天文学, 2020, 50(9): 129-151. |
TENG H H, YANG P F, ZHANG Y N, et al. Flow and combustion mechanism of oblique detonation engines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(9): 129-151 (in Chinese). | |
12 | BACHMAN C L, GOODWIN G B. Ignition criteria and the effect of boundary layers on wedge-stabilized oblique detonation waves[J]. Combustion and Flame, 2021, 223: 271-283. |
13 | WANG T, ZHANG Y N, TENG H H, et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture[J]. Physics of Fluids, 2015, 27(9): 096101. |
14 | CAI X D, LIANG J H, LIN Z Y, et al. Adaptive mesh refinement–based numerical simulation of detonation initiation in supersonic combustible mixtures using a hot jet[J]. Journal of Aerospace Engineering, 2015, 28(1): 04014046. |
15 | LI H B, LI J L, XIONG C, et al. Investigation of hot jet on active control of oblique detonation waves[J]. Chinese Journal of Aeronautics, 2020, 33(3): 861-869. |
16 | YAO J Y, LIN Z Y. Numerical investigation of jet-wedge combinatorial initiation for oblique detonation wave in supersonic premixed mixture[J]. Physics of Fluids, 2023, 35(2): 026101. |
17 | 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展[J]. 力学进展, 2020, 50: 202002. |
TENG H H, JIANG Z L. Progress in multi-wave structure and stability of oblique detonations[J]. Advances in Mechanics, 2020, 50: 202002 (in Chinese). | |
18 | YANG P F, TENG H H, JIANG Z L, et al. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model[J]. Combustion and Flame, 2018, 193: 246-256. |
19 | IWATA K, NAKAYA S, TSUE M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769. |
20 | XIANG G X, LI H Y, CAO R H, et al. Study of the features of oblique detonation induced by a finite wedge in hydrogen-air mixtures with varying equivalence ratios[J]. Fuel, 2020, 264: 116854. |
21 | REN Z X, WANG B. Transition of oblique detonation wave in a two-phase hydrocarbon-air mixture[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
22 | GUO H B, ZHAO N B, YANG H L, et al. Analysis on stationary window of oblique detonation wave in methane-air mixture[J]. Aerospace Science and Technology, 2021, 118: 107038. |
23 | PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power, 1991, 7(20): 837-845. |
24 | 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波[J]. 物理学报, 2014, 63(20): 225-232. |
LIU Y, ZHOU J, LIN Z Y. Ramp-induced oblique detonation wave with an incoming boudary layer effect[J]. Acta Physica Sinica, 2014, 63(20): 225-232 (in Chinese). | |
25 | LI C P, KAILASANATH K, ORAN E S. Detonation structures behind oblique shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611. |
26 | 韩信, 刘云峰, 张子健, 等. 提高高马赫数超燃冲压发动机推力的理论方法[J]. 力学学报, 2022, 54(3): 633-643. |
HAN X, LIU Y F, ZHANG Z J, et al. The theoretical method to increase the thrust of high Mach number scramjets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 633-643 (in Chinese). | |
27 | 韩信, 张文硕, 张子健, 等. 鼓包诱导斜爆震波的数值研究[J]. 推进技术, 2022, 43(5): 190-201. |
HAN X, ZHANG W S, ZHANG Z J, et al. Numerical study of oblique detonation waves induced by a bump[J]. Journal of Propulsion Technology, 2022, 43(5): 190-201 (in Chinese). | |
28 | ZHANG Y C, XIANG G X, YU J, et al. Accelerated initiation of oblique detonation induced by disturbance in detonative zone[J]. Chinese Journal of Aeronautics, 2023, 36(11): 153-164. |
29 | XIANG G X, ZHANG Y C, GAO X, et al. Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures[J]. Fuel, 2021, 295: 120615. |
30 | YANG L, YUE L J, ZHANG Q F. Onset of oblique detonation waves for a cavity-based wedge[J]. AIAA Journal, 2022, 60(5): 2836-2849. |
31 | TENG H H, ZHANG Y H, YANG P F, et al. Oblique detonation wave triggered by a double wedge in hypersonic flow[J]. Chinese Journal of Aeronautics, 2022, 35(4): 176-184. |
32 | MENEES P. Analytical and experimental investigations of the oblique detonation wave engine concept: NASA-TM-102839[R]. Washington, D.C.: NASA, 1991. |
33 | 王爱峰. 驻定斜爆轰的机理研究及其在高超推进中的应用探索[D]. 北京: 中国科学院, 2011. |
WANG A F. Study on mechanism of stationary oblique detonation and its application in hypersonic propulsion[D]. Beijing: University of Chinese Academy of Sciences, 2011 (in Chinese). | |
34 | 杨鹏飞, 张子健, 杨瑞鑫, 等. 斜爆轰发动机的推力性能理论分析[J]. 力学学报, 2021, 53(10): 2853-2864. |
YANG P F, ZHANG Z J, YANG R X, et al. Theorical study on propulsive performance of oblique detonation engine[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese). | |
35 | BIAN J, ZHOU L, TENG H H. Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydrogen-air mixtures[J]. Fuel, 2021, 286: 119458. |
36 | 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J]. 航空学报, 2015, 36(1): 274-288. |
ZHANG K Y. Research progress of hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 274-288 (in Chinese). | |
37 | XIONG H C, QIU R F, HAN X, et al. Investigating the flow characteristics and thermodynamic performance of curved detonation waves[J]. Physics of Fluids, 2023, 35(8): 087119. |
38 | JACHIMOWSKI C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion: NASA-TP-2791[R]. Washington, D.C.: NASA, 1988. |
39 | LEHR H F. Experiments on shock-induced combustion[J]. Acta Astronautica, 1972, 17: 589-597. |
40 | WANG T, ZHANG Y N, TENG H H, et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture[J]. Physics of Fluids, 2015, 27(9): 096101. |
41 | SHI C G, ZHU C X, YOU Y C, et al. Method of curved-shock characteristics with application to inverse design of supersonic flowfields[J]. Journal of Fluid Mechanics, 2021, 920: A36. |
42 | MÖLDER S. Curved shock theory[J]. Shock Waves, 2016, 26(4): 337-353. |
43 | SHI C G, HAN W Q, DEITERDING R, et al. Second-order curved shock theory[J]. Journal of Fluid Mechanics, 2020, 891: A21. |
44 | ALEXANDER D C, SISLIAN J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. |
[1] | ZHOU Rui, LI Xiaopeng. Numerical investigation of mixing characteristic of cold continuously rotating detonation engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(12): 3668-3674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341