1 |
LUO M, LUO H, ZHANG D H, et al. Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy[J]. Journal of Materials Processing Technology, 2018, 252: 105-115.
|
2 |
MALI R A, GUPTA T V K, RAMKUMAR J. A comprehensive review of free-form surface milling-Advances over a decade[J]. Journal of Manufacturing Processes, 2021, 62: 132-167.
|
3 |
张吉银, 姚倡锋, 谭靓, 等. 喷丸强化残余应力对疲劳性能和变形控制影响研究进展[J]. 机械工程学报, 2023, 59(6): 46-60.
|
|
ZHANG J Y, YAO C F, TAN L, et al. Research progress of the effect of shot peening residual stress on fatigue performance and deformation control[J]. Journal of Mechanical Engineering, 2023, 59(6): 46-60 (in Chinese).
|
4 |
岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164.
|
|
YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164 (in Chinese).
|
5 |
ZHANG Z, LI L, YANG Y, et al. Machining distortion minimization for the manufacturing of aeronautical structure[J]. International Journal of Advanced Manufacturing Technology, 2014, 73(9-12): 1765-1773.
|
6 |
LUO M, LUO H, AXINTE D, et al. A wireless instrumented milling cutter system with embedded PVDF sensors[J]. Mechanical Systems and Signal Processing, 2018, 110: 556-568.
|
7 |
LIU C Q, LI Y G, HAO X Z. An adaptive machining approach based on in-process inspection of interim machining states for large-scaled and thin-walled complex parts[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 3119-3128.
|
8 |
XU J T, XU L K, LI Y F, et al. Shape-adaptive CNC milling for complex contours on deformed thin-walled revolution surface parts[J]. Journal of Manufacturing Processes, 2020, 59: 760-771.
|
9 |
HAO X Z, LI Y G, DENG T C, et al. Tool path transplantation method for adaptive machining of large-sized and thin-walled free form surface parts based on error distribution[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56: 222-232.
|
10 |
CERUTTI X, MOCELLIN K. Influence of the machining sequence on the residual stress redistribution and machining quality: Analysis and improvement using numerical simulations[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(1-4): 489-503.
|
11 |
HAO X Z, LI Y G, NI Y, et al. A collaborative optimization method of machining sequence for deformation control of double-sided structural parts[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(11-12): 2941-2953.
|
12 |
TOUBHANS B, VIPREY F, FROMENTIN G, et al. Study of phenomena responsible for part distortions when turning thin Inconel 718 workpieces[J]. Journal of Manufacturing Processes, 2021, 61: 46-55.
|
13 |
LI B Z, JIANG X H, YANG J G, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216: 223-233.
|
14 |
HUANG K, YANG W, YE X. Adjustment of machining-induced residual stress based on parameter inversion[J]. International Journal of Mechanical Sciences, 2018, 135: 43-52.
|
15 |
吴宝海, 郑志阳, 张阳, 等. 面向薄壁零件加工变形与振动控制的智能装夹技术研究进展[J]. 机械工程学报, 2021, 57(17): 21-34.
|
|
WU B H, ZHENG Z Y, ZHANG Y, et al. Intelligent clamping technology for machining deformation and vibration control of thin-wall parts: a review of recent progress[J]. Journal of Mechanical Engineering, 2021, 57(17): 21-34 (in Chinese).
|
16 |
郑志阳, 张阳, 张钊, 等. 基于GA⁃SVR的薄壁叶片辅助支撑布局优化方法[J]. 航空学报, 2023, 44(4): 426805.
|
|
ZHENG Z Y, ZHANG Y, ZHANG Z, et al. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 426805 (in Chinese).
|
17 |
XING Y F. Fixture layout design of sheet metal parts based on global optimization algorithms[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139(10): 1-10.
|
18 |
RAMACHANDRAN T, SURENDARNATH S, DHARMALINGAM R. Engine-bracket drilling fixture layout optimization for minimizing the workpiece deformation[J]. Engineering Computations (Swansea, Wales), 2020, 38(5): 1978-2002.
|
19 |
YU J H, CHEN Z T, JIANG Z P. A control process for machining distortion by using an adaptive dual-sphere fixture[J]. International Journal of Advanced Manufacturing Technology, 2016, 12: 3463-3470.
|
20 |
HAO Q L, YANG Q. A self-adaptive auxiliary fixture for deformation control in blade machining[J]. International Journal of Advanced Manufacturing Technology, 2020, 111(5-6): 1415-1423.
|
21 |
GONZALO O, SEARA J M, GURUCETA E, et al. A method to minimize the workpiece deformation using a concept of intelligent fixture[J]. Robotics and Computer-Integrated Manufacturing, 2017, 48: 209-218.
|
22 |
HAO X Z, LI Y G, CHEN G X, et al. 6+X locating principle based on dynamic mass centers of structural parts machined by responsive fixtures[J]. International Journal of Machine Tools and Manufacture, 2018, 125: 112-122.
|
23 |
CHATELAIN J F, LALONDE J F, TAHAN A S. Effect of residual stresses embedded within workpieces on the distortion of parts after machining[J]. International Journal of Mechanics, 2012, 6(1): 43-51.
|
24 |
HAO X Z, LI Y G, LI M Q, et al. A part deformation control method via active pre-deformation based on online monitoring data[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(5-8): 2681-2692.
|
25 |
ZHANG Z X, LUO M, TANG K, et al. A new in-processes active control method for reducing the residual stresses induced deformation of thin-walled parts[J]. Journal of Manufacturing Processes, 2020, 59: 316-325.
|
26 |
GAMEROS A, LOWTH S, AXINTE D, et al. State-of-the-art in fixture systems for the manufacture and assembly of rigid components: A review[J] International Journal of Machine Tools and Manufacture, 2017,123: 1-21.
|
27 |
ZHANG Z X, ZHANG Z, ZHANG D H, et al. Milling distortion prediction for thin-walled component based on the average MIRS in specimen machining[J]. International Journal of Advanced Manufacturing Technology, 2020, 111(11-12): 3379-3392.
|