[1] ROYSDON P, KHALID M. Blended-wing-body lateral-directional stability investigation using 6DOF simu-lation[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(1):7-19. [2] DMITRIEV V G, SHKADOV L M, DENISOV V E, et al. The flying-wing concept-chances and risks:AIAA-2003-2887[R]. Reston:AIAA, 2003. [3] STENFELT G, RINGERTZ U. Yaw control of a tailless aircraft configuration[J]. Journal of Aircraft, 2010, 47(5):1807-1811. [4] NGUYEN L, YIP L, CHAMBERS J. Self-induced wing rock of slender delta wings[C]//7th Atmospheric Flight Mechanics Conference. Reston:AIAA, 1981. [5] LEVIN D, KATZ J. Dynamic load measurements with delta wings undergoing self-induced roll oscillations[J]. Journal of Aircraft, 1984, 21(1):30-36. [6] NG T T, MALCOLM G N, LEWIS L C. Experimental study of vortex flows over delta wings in wing-rock motion[J]. Journal of Aircraft, 1992, 29(4):598-603. [7] GRESHAM N T, WANG Z, GURSUL I. Vortex dynamics of free-to-roll slender and nonslender delta wings[J]. Journal of Aircraft, 2010, 47(1):292-302. [8] ERICSSON L E. The fluid mechanics of slender wing rock[J]. Journal of Aircraft, 1984, 21(5):322-328. [9] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248. [10] HUANG D, WU G X. Unsteady rolling moment characteristics for a fighter oscillating with yawing-rolling coupled motion[J]. Journal of Aircraft, 2006, 43(5):1570-1573. [11] AHMED A, WORLEY J. Yaw-roll coupled oscillations of a slender delta wing[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008. [12] 杨小亮, 刘伟, 赵云飞, 等. 80°后掠三角翼强迫俯仰、自由滚转双自由度耦合运动特性数值研究[J]. 空气动力学学报, 2011, 29(4):421-426. YANG X L, LIU W, ZHAO Y F, et al. Numerical investigation of the characteristics of double degree-of-freedom motion of an 80° delta wing in force-pitch and free-roll[J]. Acta Aerodynamica Sinica, 2011, 29(4):421-426 (in Chinese). [13] OWENS B, CAPONE F, HALL R, et al. Free-to-roll analysis of abrupt wing stall on military aircraft at transonic speeds[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003. [14] OWENS D B, CAPONE F J, HALL R M, et al. Transonic free-to-roll analysis of abrupt wing stall on military aircraft[J]. Journal of Aircraft, 2004, 41(3):474-484. [15] KHAN M J, AHMED A, OEHL D C. Response of a free-to-roll slender delta wings to pitching and plunging[J]. Journal of Aircraft, 2006, 43(1):275-279. [16] KANDIL O, MENZIES M. Coupled rolling and pitching oscillation effects on transonic shock-induced vortex-breakdown flow of a delta wing[C]//34th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1996. [17] WANG J J, FENG L H. Flow control techniques and applications[M]. Cambridge:Cambridge University Press, 2018. [18] NIU Z G, LIU J, LIANG H, et al. Flying wing flow separation control by microsecond pulsed dielectric barrier discharge at high Reynolds number[J]. AIP Advances, 2019, 9(12):125120. [19] ZHU J C, SHI Z W, SUN Q B, et al. Yaw control of a flying-wing unmanned aerial vehicle based on reverse jet control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(6):1237-1255. [20] DONG Y Z, SHI Z W, CHEN K, et al. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing[J]. Aerospace Science and Technology, 2020, 99:105766. [21] CROWTHER W J, WILDE P I A, GILL K, et al. Towards Integrated design of fluidic flight controls for a flapless aircraft[J]. The Aeronautical Journal, 2009, 113(1149):699-713. [22] LATEN J B, LEBEAU R P. Development and flight testing of a dielectric barrier discharge plasma actuator controlled aircraft[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [23] ZHANG P F, WANG J J, FENG L H. Review of zero-net-mass-flux jet and its application in separation flow control[J]. Science in China Series E:Technological Sciences, 2008, 51(9):1315-1344. [24] 白雪礼. 小展弦比飞翼布局飞行器非定常气动特性研究[D]. 南京:南京航空航天大学, 2020. BAI X L. Research on unsteady aerodynamic characteristics of low aspect ratio flying wing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). [25] LI X, FENG L H, LI Z Y. Flow mechanism for the effect of pivot point on the aerodynamic characteristics of a pitching airfoil and its manipulation[J]. Physics of Fluids, 2019, 31(8):087108. [26] NARSIPUR S, HOSANGADI P, GOPALARATHNAM A, et al. Variation of leading-edge suction at stall for steady and unsteady airfoil motions[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [27] LI X, FENG L H. Critical indicators of dynamic stall vortex[J]. Journal of Fluid Mechanics, 2022, 937:A16. [28] 黄达, 李志强, 史志伟, 等. 飞机大振幅非定常滚转运动的非线性稳定性分析[J]. 空气动力学学报, 2000, 18(4):401-406. HUANG D, LI Z Q, SHI Z W, et al. A nonlinear stability analysis for an aircraft rolling in large amplitude motion[J]. Acta Aerodynamica Sinica, 2000, 18(4):401-406 (in Chinese). |