ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (5): 627142-627142.doi: 10.7527/S1000-6893.2022.27142
• Special Topic: Advanced Manufacturing and Assembly Technology Using Robotic • Previous Articles
LIAO Wenhe1,2, TIAN Wei1, LI Bo1, LI Pengcheng1, ZHANG Wei1, LI Yufei1
Received:
2022-03-10
Revised:
2022-03-18
Published:
2022-04-12
Supported by:
CLC Number:
LIAO Wenhe, TIAN Wei, LI Bo, LI Pengcheng, ZHANG Wei, LI Yufei. Error compensation technology and its application progress of an industrial robot[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 627142-627142.
[1] 丰飞, 杨海涛, 唐丽娜, 等. 大尺度构件重载高精加工机器人本体设计与性能提升关键技术[J]. 中国机械工程, 2021, 32(19):2269-2287. FENG F, YANG H T, TANG L N, et al. Key technologies of design and performance improvement of heavy-duty and high precision machining robot bodies for large-scale components[J]. China Mechanical Engineering, 2021, 32(19):2269-2287(in Chinese). [2] 陶永, 王田苗, 刘辉, 等. 智能机器人研究现状及发展趋势的思考与建议[J]. 高技术通讯, 2019, 29(2):149-163. TAO Y, WANG T M, LIU H, et al. Insights and suggestions on the current situation and development trend of intelligent robots[J]. Chinese High Technology Letters, 2019, 29(2):149-163(in Chinese). [3] 赵杰. 国产工业机器人研究热点[J]. 测控技术, 2018, 37(10):1-2. ZHAO J. Research hotspot of domestic industrial robot[J]. Measurement & Control Technology, 2018, 37(10):1-2(in Chinese). [4] 任永杰, 尹仕斌, 邾继贵. 面向现代柔性制造的工业机器人高精度控制方法[J]. 航空制造技术, 2018, 61(5):16-21. REN Y J, YIN S B, ZHU J G. High precision control method of industrial robot for modern flexible manufacturing[J]. Aeronautical Manufacturing Technology, 2018, 61(5):16-21(in Chinese). [5] 田威, 程思渺, 李波, 等. 考虑关节回差的工业机器人精度补偿方法[J]. 航空学报, 2022, 43(5):625569. TIAN W, CHENG S M, LI B, et al. An error compensation method of an industrial robot with joint backlash[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5):625569(in Chinese). [6] 何晓煦, 田威, 曾远帆, 等. 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017, 38(4):420538. HE X X, TIAN W, ZENG Y F, et al. Robot positioning error and residual error compensation for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):420538(in Chinese). [7] ZENG Y F, TIAN W, LIAO W H. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120. [8] ROTH Z, MOORING B, RAVANI B. An overview of robot calibration[J]. IEEE Journal on Robotics and Automation, 1987, 3(5):377-385. [9] GONG C H, YUAN J X, NI J. Nongeometric error identification and compensation for robotic system by inverse calibration[J]. International Journal of Machine Tools and Manufacture, 2000, 40(14):2119-2137. [10] RENDERS J M, ROSSIGNOL E, BECQUET M, et al. Kinematic calibration and geometrical parameter identification for robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6):721-732. [11] WHITNEY D E, LOZINSKI C A, ROURKE J M. Industrial robot forward calibration method and results[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108(1):1-8. [12] NUBIOLA A, BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):236-245. [13] COLLINS C L, ROBINSON M L. Accuracy analysis and validation of the Mars science laboratory (MSL) robotic arm[C]//Proceedings of ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2014. [14] JUDD R, KNASINSKI A. A technique to calibrate industrial robots with experimental verification[C]//Proceedings 1987 IEEE International Conference on Robotics and Automation, 1987, 4:351-357. [15] SHIAKOLAS P S, CONRAD K L, YIH T C. On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots[J]. International Journal of Modelling and Simulation, 2002, 22(4):245-254. [16] CHEN J, CHAO L M. Positioning error analysis for robot manipulators with all rotary joints[J]. IEEE Journal on Robotics and Automation, 1987, 3(6):539-545. [17] ELATTA A Y, GEN L P, ZHI F L, et al. An overview of robot calibration[J]. Information Technology Journal, 2003, 3(1):74-78. [18] 黄松, 胡晓兵, 周飞, 等. 关节机器人定位精度影响因素分析[J]. 机械, 2014, 41(4):70-74. HUANG S, HU X B, ZHOU F, et al. Analysis of the factors affecting the precision of robot localization[J]. Machinery, 2014, 41(4):70-74(in Chinese). [19] LUNCANU A, GHEORGHE S. The influence of reference position deviation on industrial robots positioning precision[J]. IOP Conference Series:Materials Science and Engineering, 2018, 400:052004. [20] CORDES M, HINTZE W. Offline simulation of path deviation due to joint compliance and hysteresis for robot machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):1075-1083. [21] 王志军, 刘璐, 李占贤, 等. 基于六维力传感器的机器人动态力补偿研究[J]. 机械设计, 2020, 37(11):72-77. WANG Z J, LIU L, LI Z X, et al. Research on dynamic force compensation of robots based on the six-dimensional force sensor[J]. Journal of Machine Design, 2020, 37(11):72-77(in Chinese). [22] 张铁, 胡亮亮, 邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5):801-809, 854. ZHANG T, HU L L, ZOU Y B. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5):801-809, 854(in Chinese). [23] ERKAYA S. Investigation of joint clearance effects on welding robot manipulators[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(4):449-457. [24] WU W D, RAO S S. Uncertainty analysis and al-location of joint tolerances in robot manipulators based on interval analysis[J]. Reliability Engineering & System Safety, 2007, 92(1):54-64. [25] 王铁军. 基于ADAMS的串联机器人运动可靠性仿真[D]. 沈阳:东北大学, 2006. WANG T J. Motion reliability simulation based on ADAMS of a serial-link robot[D]. Shenyang:Northeastern University, 2006(in Chinese). [26] MESSAY T, ORDÓÑEZ R, MARCIL E. Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37:33-48. [27] WANG L F, WANG T M, TANG P F, et al. A new hand-eye calibration approach for fracture reduction robot[J]. Computer Assisted Surgery (Abingdon, England), 2017, 22(sup1):113-119. [28] 齐俊德, 张定华, 李山, 等. 考虑测量空间的机器人绝对定位精度标定[J]. 机械科学与技术, 2020, 39(1):68-73. QI J D, ZHANG D H, LI S, et al. Calibration of absolute positioning accuracy of robots considering measurement space[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1):68-73(in Chinese). [29] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955, 22(2):215-221. [30] HARTENBURG R S, DENAVIT J, FREUDENSTEIN F. Kinematic synthesis of linkages[J]. Journal of Applied Mechanics, 1965, 32(2):477. [31] HAYATI S, MIRMIRANI M. Improving the absolute positioning accuracy of robot manipulators[J]. Journal of Robotic Systems, 1985, 2(4):397-413. [32] HAYATI S A. Robot arm geometric link parameter estimation[C]//The 22nd IEEE Conference on Decision and Control, 1983:1477-1483. [33] ALICI G, SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory, 2005, 40(8):879-906. [34] STONE H, SANDERSON A. A prototype arm signature identification system[C]//Proceedings of 1987 IEEE International Conference on Robotics and Automation, 1987:175-182. [35] STONE H, SANDERSON A, NEUMAN C. Arm signature identification[C]//Proceedings of 1986 IEEE International Conference on Robotics and Automation, 1986:41-48. [36] STONE H W, SANDERSON A C. Statistical performance evaluation of the S-model arm signature identification technique[C]//Proceedings of 1988 IEEE International Conference on Robotics and Automation, 1988:939-946. [37] ZHUANG H, ROTH Z S, HAMANO F. A complete and parametrically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1992, 8(4):451-463. [38] KAZEROUNIAN K, QIAN G Z. Kinematic calibration of robotic manipulators[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1989, 111(4):482-487. [39] GUPTA K C. Kinematic analysis of manipulators using the zero reference position description[J]. The International Journal of Robotics Research, 1986, 5(2):5-13. [40] OKAMURA K, PARK F C. Kinematic calibration using the product of exponentials formula[J]. Robotica, 1996, 14(4):415-421. [41] CHEN I M, YANG G L, TAN C T, et al. Local POE model for robot kinematic calibration[J]. Mechanism and Machine Theory, 2001, 36(11-12):1215-1239. [42] OH Y T. Robot accuracy evaluation using a ball-bar link system[J]. Robotica, 2011, 29(6):917-927. [43] SANTOLARIA J, CONTE J, GINÉS M. Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):2087-2106. [44] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3):42-48. ZHOU W, LIAO W H, TIAN W. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48(in Chinese). [45] FRACZEK J, BUSKO Z. Calibration of multi-robot system without and under load using electronic theodolites[C]//Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99(Cat. No.99EX353), 1999:71-75. [46] DRIELS M R, SWAYZE W, POTTER S. Full-pose calibration of a robot manipulator using a coordinate-measuring machine[J]. The International Journal of Advanced Manufacturing Technology, 1993, 8(1):34-41. [47] LIGHTCAP C, HAMNER S, SCHMITZ T, et al. Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration[J]. IEEE Transactions on Robotics, 2008, 24(2):452-456. [48] BAI Y, ZHUANG H Q, ROTH Z S. Experiment study of PUMA robot calibration using a laser tracking system[C]//Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, 2003:139-144. [49] BORM J-H, MENG C-H. Determination of optimal measurement configurations for robot calibration based on observability measure[J]. The International Journal of Robotics Research, 1991, 10(1):51-63. [50] JOUBAIR A, BONEV I A. Comparison of the efficiency of five observability indices for robot calibration[J]. Mechanism and Machine Theory, 2013, 70:254-265. [51] ZHUANG H Q, WU J, HUANG W Z. Optimal planning of robot calibration experiments by genetic algorithms[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1996:981-986. [52] ZHUANG H Q, WANG K, ROTH Z S. Optimal selection of measurement configurations for robot calibration using simulated annealing[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994:393-398. [53] 丁学亮. Staubli工业机器人标定算法和实验研究[D]. 杭州:浙江理工大学, 2014. DING X L. Research on Staubli industrial robot calibration algorithm and experimental verification[D]. Hangzhou:Zhejiang Sci-Tech University, 2014(in Chinese). [54] 曾远帆, 廖文和, 田威. 面向精度补偿的工业机器人采样点多目标优化[J]. 机器人, 2017, 39(2):239-248. ZENG Y F, LIAO W H, TIAN W. Multi-objective optimization of samples for industrial robot error compensation[J]. Robot, 2017, 39(2):239-248(in Chinese). [55] 洪鹏, 田威, 梅东棋, 等. 空间网格化的机器人变参数精度补偿技术[J]. 机器人, 2015, 37(3):327-335. HONG P, TIAN W, MEI D Q, et al. Robotic variable parameter accuracy compensation using space grid[J]. Robot, 2015, 37(3):327-335(in Chinese). [56] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441. [57] MOTTA J M S T, DE CARVALHO G C, MCMASTER R S. Robot calibration using a 3D vision-based measurement system with a single camera[J]. Robotics and Computer-Integrated Manufacturing, 2001, 17(6):487-497. [58] GINANI L S, MOTTA J M S T. Theoretical and practical aspects of robot calibration with experimental verification[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(1):15-21. [59] PARK I W, LEE B J, CHO S H, et al. Laser-based kinematic calibration of robot manipulator using differential kinematics[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1059-1067. [60] OMODEI A, LEGNANI G, ADAMINI R. Calibration of a measuring robot:experimental results on a 5 DOF structure[J]. Journal of Robotic Systems, 2001, 18(5):237-250. [61] ZHONG X L, LEWIS J M. A new method for autonomous robot calibration[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation, 1995:1790-1795. [62] ZHONG X L, LEWIS J, N-NAGY F L. Inverse robot calibration using artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 1996, 9(1):83-93. [63] JANG J H, KIM S H, KWAK Y K. Calibration of geometric and non-geometric errors of an industrial robot[J]. Robotica, 2001, 19(3):311-321. [64] DEVLIEG R, SZALLAY T. Applied accurate robotic drilling for aircraft fuselage[J]. SAE International Journal of Aerospace, 2010, 3(1):180-186. [65] DEVLIEG R, SZALLAY T. Improved accuracy of unguided articulated robots[J]. SAE International Journal of Aerospace, 2009, 2(1):40-45. [66] TAKANASHI N. 6 DOF manipulators absolute positioning accuracy improvement using a neural-network[C]//IEEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, 1990:635-640. [67] WANG D L, BAI Y, ZHAO J Y. Robot manipulator calibration using neural network and a camera-based measurement system[J]. Transactions of the Institute of Measurement and Control, 2012, 34(1):105-121. [68] WANG D L, BAI Y. Improving position accuracy of robot manipulators using neural networks[C]//2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, 2005:1524-1526. [69] LI B, TIAN W, ZHANG C F, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2):346-360. [70] 周炜, 廖文和, 田威, 等. 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程, 2013, 24(2):174-179. ZHOU W, LIAO W H, TIAN W, et al. Method of industrial robot accuracy compensation based on particle swarm optimization neural network[J]. China Mechanical Engineering, 2013, 24(2):174-179(in Chinese). [71] 花芳芳, 田威, 胡俊山, 等. 基于深度神经网络的机器人定位误差补偿方法[J]. 航空制造技术, 2020, 63(17):78-85. HUA F F, TIAN W, HU J S, et al. Robot positioning error compensation method based on deep neural network[J]. Aeronautical Manufacturing Technology, 2020, 63(17):78-85(in Chinese). [72] BAI Y. On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(11-12):1243-1250. [73] ZHU W D, QU W W, CAO L H, et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2535-2545. [74] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2745-2755. [75] CAI Y, YUAN P J, SHI Z Y, et al. Application of universal kriging for calibrating offline-programming industrial robots[J]. Journal of Intelligent & Robotic Systems, 2019, 94(2):339-348. [76] NUBIOLA A, SLAMANI M, BONEV I A. A new method for measuring a large set of poses with a single telescoping ballbar[J]. Precision Engineering, 2013, 37(2):451-460. [77] GAUDREAULT M, JOUBAIR A, BONEV I A. Local and closed-loop calibration of an industrial serial robot using a new low-cost 3 d measuring device[C]//2016 IEEE International Conference on Robotics and Automation, 2016:4312-4319. [78] JOUBAIR A, BONEV I A. Non-kinematic calibration of a six-axis serial robot using planar constraints[J]. Precision Engineering, 2015, 40:325-333. [79] HE S S, MA L, YAN C Y, et al. Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):1037-1050. [80] LIU Y, XI N, ZHAO J G, et al. Development and sensitivity analysis of a portable calibration system for joint offset of industrial robot[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009:3838-3843. [81] WANG Z H, XU H, CHEN G D, et al. A distance error based industrial robot kinematic calibration method[J]. Industrial Robot:An International Journal, 2014, 41(5):439-446. [82] HA I C. Kinematic parameter calibration method for industrial robot manipulator using the relative position[J]. Journal of Mechanical Science and Technology, 2008, 22(6):1084-1090. [83] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese). [84] DEVLIEG R C. Robotic manufacturing system with accurate control:US8989898[P]. 2015-03-24. [85] TSAI J, WONG E, TAO J M, et al. Secondary position feedback control of a robot:US8473103[P]. 2013-06-25. [86] SAUND B, DEVLIEG R. High accuracy articulated robots with CNC control systems[J]. SAE International Journal of Aerospace, 2013, 6(2):780-784. [87] MÖLLER C, SCHMIDT H C, KOCH P, et al. Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry[J]. Procedia Manufacturing, 2017, 14:17-29 [88] LIU S L, LIAO W H, TIAN W, et al. The problem in accuracy compensation of industrial robot[J]. International Robotics & Automation Journal, 2017, 3(2):282-283. [89] RUDERMAN M, HOFFMANN F, BERTRAM T. Modeling and identification of elastic robot joints with hysteresis and backlash[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10):3840-3847. [90] ZHANG L, TIAN W, ZHENG F Y, et al. Accuracy compensation technology of Closed-Loop feed-back of industrial robot joints[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020(6):858-871. [91] DROLL S. Real time path correction of industrial robots with direct end-effector feedback from a laser tracker[J]. SAE International Journal of Aerospace, 2014, 7(2):222-228. [92] 史晓佳, 张福民, 曲兴华, 等. KUKA工业机器人位姿测量与在线误差补偿[J]. 机械工程学报, 2017, 53(8):1-7. SHI X J, ZHANG F M, QU X H, et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. Journal of Mechanical Engineering, 2017, 53(8):1-7(in Chinese). [93] 方勇纯. 机器人视觉伺服研究综述[J]. 智能系统学报, 2008, 3(2):109-114. FANG Y C. A survey of robot visual servoing[J]. CAAI Transactions on Intelligent Systems, 2008, 3(2):109-114(in Chinese). [94] MARIOTTINI G L, ORIOLO G, PRATTICHIZZO D. Image-based visual servoing for nonholonomic mobile robots using epipolar geometry[J]. IEEE Transactions on Robotics, 2007, 23(1):87-100. [95] HAJILOO A, KESHMIRI M, XIE W F, et al. Robust online model predictive control for a constrained image-based visual servoing[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2242-2250. [96] 辛菁, 刘丁, 杨延西. 基于图像的机器人视觉伺服免疫控制[J]. 仪器仪表学报, 2008, 29(11):2253-2259. XIN J, LIU D, YANG Y X. Image-based robot visual servoing immune control[J]. Chinese Journal of Scientific Instrument, 2008, 29(11):2253-2259(in Chinese). [97] LIPPIELLO V, SICILIANO B, VILLANI L. Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration[J]. IEEE Transactions on Robotics, 2007, 23(1):73-86. [98] DONG G Q, ZHU Z H. Position-based visual servo control of autonomous robotic manipulators[J]. Acta Astronautica, 2015, 115:291-302. [99] 赵艳花, 张伟民. 基于位置的机器人视觉伺服控制系统研究[J]. 自动化与仪器仪表, 2010(5):3-4. ZHAO Y H, ZHANG W M. Research of robot visual servo control system based on position[J]. Automation & Instrumentation, 2010(5):3-4(in Chinese). [100] MALIS E, CHAUMETTE F, BOUDET S. 21/2 D visual servoing[J]. IEEE Transactions on Robotics and Automation, 1999, 15(2):238-250. [101] DENG L F, JANABI-SHARIFI F, WILSON W J. Hybrid motion control and planning strategies for visual servoing[J]. IEEE Transactions on Industrial Electronics, 2005, 52(4):1024-1040. [102] 谷雨, 李平, 韩波, 等. 一种基于混合视觉伺服的切换控制方法[J]. 传感技术学报, 2009, 22(4):602-607. GU Y, LI P, HAN B, et al.A switching control approach based on hybrid visual servoing[J]. Chinese Journal of Sensors and Actuators, 2009, 22(4):602-607(in Chinese). [103] SCHNEIDER U, OLOFSSON B, SO¨RNMO O, et al. Integrated approach to robotic machining with macro/micro-actuation[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(6):636-647. [104] SHU T T, GHARAATY S, XIE W F, et al. Dynamic path tracking of industrial robots with high accuracy using photogrammetry sensor[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3):1159-1170. [105] GHARAATY S, SHU T T, XIE W F, et al. Accuracy enhancement of industrial robots by on-line pose correction[C]//20172nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2017:214-220. [106] KOLBARI H, SADEGHNEJAD S, BAHRAMI M, et al. Adaptive control of a robot-assisted tele-surgery in interaction with hybrid tissues[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(12):121012. [107] ALQUMSAN A A, KHOO S, NORTON M. Robust control of continuum robots using Cosserat rod theory[J]. Mechanism and Machine Theory, 2019, 131:48-61. [108] YEN V T, NAN W Y, CUONG P. Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators[J]. Neural Computing and Applications, 2019, 31(11):6945-6958. [109] ZHANG D H, KONG L H, ZHANG S, et al. Neural networks-based fixed-time control for a robot with uncertainties and input deadzone[J]. Neurocomputing, 2020, 390:139-147. [110] YIN X X, PAN L. Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy[J]. ISA Transactions, 2018, 72:178-184. [111] YEN V T, NAN W Y, VAN CUONG P. Robust adaptive sliding mode neural networks control for industrial robot manipulators[J]. International Journal of Control, Automation and Systems, 2019, 17(3):783-792. [112] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE (one-sided cell end effector) robotic drilling system[C]//SAE Technical Paper Series. Warrendale:SAE International, 2002. [113] ZHANG H, WANG J J, ZHANG G, et al. Machining with flexible manipulator:toward improving robotic machining performance[C]//Proceedings of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005:1127-1132. [114] GRAY T, ORF D, ADAMS G. Mobile automated robotic drilling, inspection, and fastening[C]//SAE Technical Paper Series. Warrendale:SAE International, 2013. [115] ADAMS G. Next generation mobile robotic drilling and fastening systems[C]//SAE Technical Paper Series. Warrendale:SAE International, 2014. [116] DEVLIEG R, FEIKERT E. One-up assembly with robots[C]//SAE Technical Paper Series. Warrendale:SAE International, 2008. [117] WANG W, TIAN W, LIAO W H, et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73:102220. [118] 郭英杰. 基于工业机器人的飞机交点孔精镗加工关键技术研究[D]. 杭州:浙江大学, 2016. GUO Y J. Study on key techniques of aircraft intersection holes fine boring based on industrial robot[D]. Hangzhou:Zhejiang University, 2016(in Chinese). [119] 王桂锋. 工业机器人精镗飞机交点孔颤振研究及其数值模拟分析[D]. 杭州:浙江大学, 2017. WANG G F. Study on chatter performance of aircraft intersection holes fine boring and its numerical simulation analysis[D]. Hangzhou:Zhejiang University, 2017(in Chinese). [120] GUO Y J, DONG H Y, WANG G F, et al. A robotic boring system for intersection holes in air-craft assembly[J]. Industrial Robot:An International Journal, 2018, 45(3):328-336. [121] NIU J B, XU J T, REN F, et al. A short review on milling dynamics in low-stiffness cutting conditions:Modeling and analysis[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(1):2020004. [122] SUSEMIHL H, BRILLINGER C, STVRMER S P, et al. Referencing strategies for high accuracy machining of large aircraft components with mobile robotic systems[C]//SAE Technical Paper Series. Warrendale:SAE International, 2017. [123] KOTHE S, VON STVRMER S P, SCHMIDT H C, et al. Accuracy analysis and error source identification for optimization of robot based machining systems for aerospace production[C]//SAE Technical Paper Series. Warrendale:SAE International, 2016:2137. [124] 李宇飞, 田威, 李波, 等. 机器人铣削系统精度控制方法及试验[J]. 航空学报, 2022,43(5):625815. LI Y F, TIAN W, LI B, et al. Accuracy control method and experiment of robot milling system[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(5):625815(in Chinese). [125] ZHU D H, FENG X Z, XU X H, et al. Robotic grinding of complex components:a step towards efficient and intelligent machining-challenges, solutions, and applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101908. [126] TSAI M J, HUANG J F, KAO W L. Robotic polishing of precision molds with uniform material removal control[J]. International Journal of Machine Tools and Manufacture, 2009, 49(11):885-895. [127] XIE H, LI W L, ZHU D H, et al. A systematic model of machining error reduction in robotic grinding[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6):2961-2972. [128] 李东, 王诗敏. 装配机器人的关键技术与发展方向[J]. 中国机械, 2013(7):133-134. LI D, WANG S M. Key technologies and development direction of assembly robot[J]. Machine China, 2013(7):133-134(in Chinese). [129] 马聪. 电子制造机器人视觉引导装配的定位方法研究[D]. 长沙:湖南大学, 2019. MA C. Research on positioning method of vision guide assembly for electronic manufacturing robot[D]. Changsha:Hunan University, 2019(in Chinese). [130] 季旭全, 王君臣, 赵江地, 等. 基于机器人与视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018, 54(23):63-72. JI X Q, WANG J C, ZHAO J D, et al. Intelligent robotic assembly method of spaceborne equipment based on visual guidance[J]. Journal of Mechanical Engineering, 2018, 54(23):63-72(in Chinese). |
[1] | Chongli MA, Jingyuan LIU. Effect of grid strategy on numerical simulation results of aerothermal heating loads over hypersonic blunt bodies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126710-126710. |
[2] | Weimin WANG, Dongfang HU. Review on non⁃contact dynamic stress measurement methods of rotating blades [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 28516-028516. |
[3] | TIAN Wei, CHENG Simiao, LI Bo, LIAO Wenhe. An error compensation method of an industrial robot with joint backlash [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 625569-625569. |
[4] | LI Yufei, TIAN Wei, LI Bo, ZHANG Nan. Accuracy control method and experiment of robot milling system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 625815-625815. |
[5] | LIAO Wenhe, ZHENG Kan, SUN Lianjun, DONG Song, ZHANG Lei. Review on chatter stability in robotic machining for large complex components [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 26061-026061. |
[6] | LIN Chuang, ZHENG Yu, GUANG Chenhan, WANG Yan, YANG Yang. Design implementation and error analysis of mass and centroid measurement of aircraft with wingspan [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 224893-224893. |
[7] | GULJAINA Kazezkhan, XIANG Binbin, WANG Na, AILI Yusup, CHEN Maozheng, LI Ning, XUE Fei. Errors analysis of a subreflector adjustment mechanism for NSRT [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(4): 423271-423271. |
[8] | SHI Zhanghu, HE Xiaoxu, ZENG Debiao, LEI Pei. Error compensation method for mobile robot positioning based on error similarity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 424105-424105. |
[9] | WANG Longfei, ZHANG Liyan, YE Nan. An on-line compensation technology for robotic drilling error suitable for curved structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 422871-422871. |
[10] | FANG Qiang, LI Chao, FEI Shaohua, MENG Tao. Stability analysis of robot boring system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(2): 727-737. |
[11] | DONG Huiyue, ZHOU Huafei, YIN Fucheng. Analysis and compensation for absolute positioning error of robot in automatic drilling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(7): 2475-2484. |
[12] | ZHANG Tao, TANG Xiaoming, JIN Lin. A method of high-accuracy radar calibration with ADS-B [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(12): 3947-3956. |
[13] | HU Kaiyu, AILI Yusup, XU Xuelin, XIANG Binbin, LIU Qi. Accurate Data Fitting for Adjustments of Focus Position Coordinates Applied to Cassegrain Antenna's Sub-reflector Compensation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(12): 3425-3437. |
[14] | REN Lei, DU Jianbang, WANG Meie. Error Analysis and Compensation of Size Effect in INS with IMU Rotation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1424-1435. |
[15] | QU Weiwei, HOU Penghui, YANG Genjun, HUANG Guanping, YIN Fucheng, SHI Xin. Research on the Stiffness Performance for Robot Machining Systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(12): 2823-2832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341