[1] WANG C, DONG Y F, XU G H, et al. Combat effectiveness assessment of ground-attack UCAV based on maximizing deviation[J]. Fire Control & Command Control, 2016, 41(11): 62-65 (in Chinese). 王超, 董彦非, 徐冠华, 等. 基于离差最大化的对地攻击型无人机作战效能评估[J]. 火力与指挥控制, 2016, 41(11): 62-65. [2] GAO F, ZHANG A, BI W H. Weapon system operational effectiveness evaluation based on the belief rule-based system with interval data[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(5): 6687-6701. [3] LI Q, YAN J, ZHU J Q, et al. State of art and development trends of top-level demonstration technology for aviation weapon equipment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 1-16 (in Chinese). 李清, 闫娟, 朱家强, 等. 航空武器装备顶层论证技术发展现状与趋势[J]. 航空学报, 2016, 37(1): 1-16. [4] LUO C K, CHEN Y X, XIANG H C, et al. Review of the evaluation methods of equipment's contribution rate to system-of-systems[J]. Systems Engineering and Electronics, 2019, 41(8): 1789-1794 (in Chinese). 罗承昆, 陈云翔, 项华春, 等. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(8): 1789-1794. [5] YANG K W, YANG Z W, TAN Y J, et al. Review of the evaluation methods of equipment system of systems facing the contribution rate[J]. Systems Engineering and Electronics, 2019, 41(2): 311-321 (in Chinese). 杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(2): 311-321. [6] BRAAFLADT A, STEFFENS M J, MAVRIS D N. Tradespace exploration and analysis using mission effectiveness in aircraft conceptual design[C]//AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1127. [7] ZHANG R W, SONG B F, PEI Y, et al. Agent-based analysis of multi-UAV area monitoring mission effectiveness[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 3151. [8] TRAN H T, DOMERÇANT J C, MAVRIS D N. Evaluating the agility of adaptive command and control networks from a cyber complex adaptive systems perspective[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2015, 12(4): 405-422. [9] YUN Q J, SONG B F, PEI Y, et al. Analysis of the factors influencing the combat effectiveness of airborne laser weapon system based on Agent modeling[J]. Systems Engineering and Electronics, 2020, 42(4): 826-835 (in Chinese). 郧奇佳, 宋笔锋, 裴扬, 等. 基于Agent建模的机载激光武器系统作战效能影响因素分析[J]. 系统工程与电子技术, 2020, 42(4): 826-835. [10] TRAN H T, DOMERÇANT J C, MAVRIS D N. Evaluating the agility of adaptive command and control networks from a cyber complex adaptive systems perspective[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2015, 12(4): 405-422. [11] SCHUMANN B, FERRARO M, SURENDRA A, et al. Better design decisions through operational modeling during the early design phases[J]. Journal of Aerospace Information Systems, 2014, 11(4): 195-210. [12] GAO Y, LIU H, ZHOU Y M. An evaluation method of combat aircraft contribution effectiveness based on mission success space design[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1): 273-286. [13] BAI J P, LI T. Evaluation of penetration mission effectiveness oriented to fighter performance parameter analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 122-132 (in Chinese). 白金鹏, 李天. 面向指标论证的战斗机突防效能评估[J]. 航空学报, 2016, 37(1): 122-132. [14] FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005:28-31 (in Chinese). 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005:28-31. [15] GUNDLACH J. Designing unmanned aircraft systems[M]. Reston: AIAA, 2012. [16] JOHNSON J. Analysis of image forming systems[C]//Proceedings of SPIE, Vol.513, Part One and Part Two. Bellingham: U.S.Army Research and Development Laboratories, 1985: 761. [17] YOU R R, WANG X W, REN P D, et al. Target observation performance evaluation method for video surveillance based on Johnson criteria[J]. Infrared and Laser Engineering, 2016, 45(12): 1217003 (in Chinese). 游瑞蓉, 王新伟, 任鹏道, 等. 约翰逊准则的视频监控目标检测性能评估方法[J]. 红外与激光工程, 2016, 45(12): 1217003. [18] FU X J, LI P. The analysis on hit probability of semi-active laser guided air-to-ground missile weapon system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 49-52 (in Chinese). 符新军, 李鹏. 激光半主动制导空地导弹武器系统命中概率分析[J]. 弹箭与制导学报, 2011, 31(4): 49-52. [19] PEI Y, SONG B F, SHI S. Analysis method of aircraft combat survivability: Progress and challenge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 216-234 (in Chinese). 裴扬, 宋笔锋, 石帅. 飞机作战生存力分析方法研究进展与挑战[J]. 航空学报, 2016, 37(1): 216-234. [20] RICHARDS M. Fundamentals of radar signal processing[M]. New York: McGraw Hill, 2005: 353-355. [21] YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. [22] TIAN Y L, WANG Y Q, XIONG P S, et al. Structured simulation platform architecture for fighter cloud operations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1938-1945 (in Chinese). 田永亮, 王永庆, 熊培森, 等. 面向战斗机云作战的构造型仿真平台架构[J]. 北京航空航天大学学报, 2019, 45(10): 1938-1945. [23] LUO C K, CHEN Y X, HU X, et al. Evaluation method of equipment’s contribution rate to system-of-systems based on operation loop and self-information quantity[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 741-748 (in Chinese). 罗承昆, 陈云翔, 胡旭, 等. 基于作战环和自信息量的装备体系贡献率评估方法[J]. 上海交通大学学报, 2019, 53(6): 741-748. [24] ZHAO D L, TAN Y J, LI J C, et al. Armament system of systems contribution evaluation based on operation loop[J]. Systems Engineering and Electronics, 2017, 39(10): 2239-2247 (in Chinese). 赵丹玲, 谭跃进, 李际超, 等. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39(10): 2239-2247. |