[1]刘君, 邹东阳, 徐春光.基于非结构动网格的非定常激波装配法[J].空气动力学学报, 2015, 33(1):10-16[2]刘君, 邹东阳, 董海波.动态间断装配法模拟斜激波壁面反射[J].航空学报, 2016, 37(03):836-846[3]ZOU D Y, XU CH G, DONG H B, L J.A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes[J].Journal of Computational Physics, 2017, 345:866-882[4]CHANG S Y, BAI X Z, ZOU D Y, et al.An adaptive discontinuity fitting technique on unstructured dy-namic grids[J].Shock Waves, 2019, 29(8):1103-1115[5]JIANG G, SHU C.Efficient Implementation of Weighted ENO Schemes[J].Journal of Computational Physics, 1996, 121(1):202-228[6]HENRICK A, ASLAM T, POWERS J.Mapped Weighted Essentially Nonoscillatory Schemes: Achieving Optimal Order Near Critical Points[J].Journal of Computational Physics, 2005, 207(2):542-567[7]BORGES R, CARMONA M, COSTA B, DON W.An Improved Weighted Essentially Non-oscillatory Scheme for Hyperbolic Conservation Laws[J].Journal of Computational Physics, 2008, 227(6):3191-3211[8]Gottlieb S, Shu C-W.Total variation diminishing Runge–Kutta schemes[J].Math Comput, 1998, 67(221):73-85[9]刘君, 韩芳.有关有限差分高精度格式两个应用问题的讨论[J].空气动力学学报, 2020, 38(2):244-253[10]刘君, 魏雁昕, 韩芳.有限差分法的坐标变换诱导误差[J]. 航空学报:1-13 [2020-10-26]. http://kns.cnki.net/kcms/detail/11.1929.V.20201011.1620.012.html.[11]NONOMURA T, TERAKADO D, ABE Y, FUJII K.A new technique for freestream preservation of finite-difference WENO on curvilinear grid[J].Computers & Fluids, 2015, 107:242-255[12]ZHU Y J, SUN Z S, REN Y X, et al.A Numerical Strategy for Freestream Preservation of the High Or-der Weighted Essentially Non-oscillatory Schemes on Stationary Curvilinear Grids[J].Journal of scientific computing, 2017, 72(3):1021-1048[13]朱志斌, 杨武兵, 禹旻.满足几何守恒律的格式及其应用[J].计算力学学报, 2017, 34(06):779-784[14]DENG X G, MAO M L, TU G H, LIU H Y, ZHANG H X.Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics, 2011, 230:1100-1115[15]刘君, 韩芳, 夏冰.有限差分法中几何守恒律的机理及算法[J].空气动力学学报, 2018, 36(6):917-926[16]刘君, 韩芳.有限差分法中的贴体坐标变换[J].气体物理, 2018, 3(5):18-29[17]SLOTNICK J P, KHODADOUST A, ALONSO J J, et al.CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences[R]. NASA CR-2014-218178, Langley Research Center, March 2014.[18]DENG X, BOIVIN P, XIAO F.Revisit to the THINC scheme: A new formulation for two-wave Riemann solver accurate at contact interfaces[J].Physics of Fluids, 2019, 31(4):1-12[19]钱战森.Godunov型显式大时间步长格式研究进展[J].航空学报, 2020, 41(07):87-115[20]钱翼稷.空气动力学[M]. 北京: 北京航空航天大学出版社, 2011:201.[21]童秉纲, 孔祥言, 邓国华.气体动力学[M]. 北京:高等教育出版社, 1990:232-237.[22] MORETTI G.Thirty-six years of shock fitting[J].Computers & Fluids, 2002, 31:719-723 |