[1] 张齐新. 当"OODA"遇上智能化[N]. 解放军报,2020-04-09(007). ZHANG Q X. "OODA" meets intelligence[N]. Chinese People's Liberation Army Daily, 2020-04-09(007) (in Chinese). [2] 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6):524377. YANG W. Development of future fighters[J] Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese). [3] 胡晓峰, 荣明. 智能化作战研究值得关注的几个问题[J]. 指挥与控制学报, 2018, 3(4):195-200. HU X F, RONG M. Several important questions of intelligent warfare research[J]. Journal of Command and Control, 2018, 3(4):195-200(in Chinese). [4] 李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术, 2018, 2(1):14-23. LI F L, LU H, SONG C, et al. Development of intelligent warfare and unmanned system technology[J]. Unmanned Systems Technology, 2018, 2(1):14-23(in Chinese). [5] 冯杰鸿. 体系智能化发展趋势及其关键技术[J]. 现代防御技术, 2020, 48(2):1-14. FENG J H. Development tendency and key technology of system intellectualization[J]. Modern Defence Technology, 2020, 48(2):1-14(in Chinese). [6] 房桂祥, 谭跃进, 张木, 等. 基于作战环的导弹武器系统体系相对贡献率评估[J]. 系统工程与电子技术, 2020, 1(1):1-7. FANG G X, TAN Y J, ZHANG M, et al. Evaluation of relative contribution rate of missile weapon system based on combat ring[J]. Systems Engineering and Electronics, 2020, 1(1):1-7(in Chinese) [7] 冯奋强, 崔秋祥, 刘莹. 基于"作战链"推进武器装备现代化[J]. 国防, 2019, 2(1):21-26. FENG F Q, CUI Q X, LIU Y. Promoting the modernization of weaponry and equipment on the basis of OODA[J]. National Defense, 2019, 2(1):21-26(in Chinese). [8] 张蓬蓬. 空战体系演变及智能化发展[J]. 飞航导弹, 2019, 3(1):60-64. ZHANG P P. Evolution and intelligent development of air combat system[J]. Aerodynamic Missile Journal, 2019, 3(1):60-64(in Chinese). [9] 张阳, 王艳正, 司光亚. 集群式电子战无人机的OODA作战环分析与建模[J]. 火力与指挥控制, 2018,8(1):31-36. ZHANG Y, WANG Y Z, SI G Y. Analysis and modeling of OODA circle of electronic warfare group UAV[J]. Fire Control & Command Control, 2018, 8(1):31-36(in Chinese). [10] 陈士涛, 张海林. 基于作战网络模型的异构无人机集群作战能力评估[J]. 军事运筹与系统工程, 2019, 1(1):38-43. CHEN S T, ZHANG H L. Assessment of fighting capability of heterogeneous unmanned aerial vehicles cluster based on operation network model[J]. Military Operations Research and Systems Engineering, 2019, 1(1):38-43(in Chinese). [11] JEFFREY L V. Tightening the OODA loop:Police militarization, race, and algorithmic surveillance[J]. Michigan Journal of Race and Law, 2016, 22(1), 4. [12] 张明智, 马力. 体系对抗OODA循环鲁棒性建模及仿真分析[J]. 系统仿真学报, 2017, 29(9):1968-1976. ZHANG M Z, MA L. System-of-systems combat OODA loop robustness modeling and experiment[J]. Journal of System Simulation, 2017, 29(9):1968-1976(in Chinese). [13] TERO B, TIMO H. A novel method for detecting APT attacks by using OODA loop and black swan theory[J]. Lecture Notes in Computer Science, 2018(1):11280. [14] KELLY M G. The F-35's new OODA loop[J]. United States Naval Institute Proceedings, 2016, 142(3):24-28. [15] DIEVES V. Dependability in future battle network system-transport layer ability to maintain quality of service[J]. Wireless Sensor Network, 2016, 8(10):211-228. [16] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1):1-3. ZHENG N N. The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):1-3(in Chinese). [17] 黄长强. 未来空战过程智能化关键技术研究[J]. 航空兵器, 2019, 26(1):11-19. HUANG C Q. Research on key technology of future air combat process intelligentization[J]. Aero Weaponry, 2019, 26(1):11-19(in Chinese). [18] 徐刚锋, 张旭荣, 张岩, 等. 人工智能技术在导弹武器装备领域的发展研究[J]. 战术导弹技术, 2019, 5(1):12-17. XU G F, ZHANG X R, ZHANG Y, et al. The development study of artificial intelligence technology on missile weapons[J]. Tactical Missile Technology, 2019, 5(1):12-17(in Chinese). [19] 槐泽鹏, 龚旻, 陈克. 未来战争形态发展研究[J]. 战术导弹技术, 2018, 1(1):1-8. HUAI Z P, GONG M, CHEN K. Study of future war form development[J]. Tactical Missile Technology, 2018, 1(1):1-8(in Chinese). [20] 包为民. 航天发展面临的控制问题与挑战[J]. 学部通讯, 2020, 2(1):72-75. BAO W M. Control problems and challenges in aerospace development[J]. Department Communication, 2020, 2(1):72-75(in Chinese). [21] 罗荣, 王亮, 肖玉杰, 等. 深度学习技术在军事领域应用[J]. 指挥控制与仿真, 2020, 1(1):1-5. LUO R, WANG L, XIAO Y J, et al. Application of deep learning technology in military field[J]. Command Control & Simulation, 2020, 1(1):1-5(in Chinese). [22] 包为民. 航天智能控制技术让运载火箭"会学习"[J/OL].航空学报, (2020-12-15)[2020-12-20]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2020.25055. BAO W M. Space intelligent control technology enables launch vehicle to "Self-Learning"[J/OL]. Acta Aeronautica et Astronautica Sinica, (2020-12-15)[2020-12-20]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2020.25055(in Chinese). [23] 张晓海, 操新文. 基于深度学习的军事智能决策支持系统[J]. 指挥控制与仿真, 2018, 2(1):1-7. ZHAGN X H, CAO X W. Military intelligent decision support system based on deep learning[J]. Command Control and Simulation, 2018, 2(1):1-7(in Chinese). [24] 潘浩. 基于深度学习的军事目标识别[D]. 杭州:杭州电子科技大学, 2018. PAN H. Deep learning based algorithm for automatic target recognition[D]. Hangzhou:Hangzhou Dianzi University, 2018(in Chinese). [25] 甄玉美. 不同分辨力遥感图像目标识别系统研制[D]. 哈尔滨:哈尔滨工业大学, 2018. ZHEN Y M. Development of target recognition system for different resolution remote sensing images[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese). [26] 车金鸽. 基于深度学习的雷达辐射源识别[D]. 西安:西安电子科技大学, 2019. CHE J G. Radar signal recognition based on deep learning[D]. Xi'an:Xidian University (in Chinese). [27] 宋达. 基于深度学习方法的水下目标识别技术研究[D]. 成都:电子科技大学, 2018. SONG D. Research on underwater target recognition method based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2018(in Chinese). [28] 翟进有, 代冀阳, 王嘉琦. 深度残差网络的无人机多目标识别[J]. 图像学报, 2019, 40(1):158-164. ZHAI J Y, DAI J Y, WANG J Q. Multi-objective identification of UAV based on deep residual network[J]. Journal of Graphics, 2019, 40(1):158-164(in Chinese). [29] 朱丰, 胡晓峰, 吴琳. 基于深度学习的战场态势高级理解模拟方法[J]. 火力与指挥控制, 2018, 43(8):27-32. ZHU F, HU X F, WU L. Simulation method of battlefields situation senior comprehension based on deep learning[J]. Fire Control and Command Control, 2018, 43(8):27-32(in Chinese). [30] 廖鹰, 易卓, 胡晓峰. 基于深度学习的初级战场态势理解研究[J]. 指挥与控制学报, 2017, 3(1):67-71. LIAO Y, YI Z, HU X F. Battlefields situation elementary comprehension based on deep learning[J]. Journal of Command and Control, 2017, 3(1):67-71(in Chinese). [31] 李高垒, 马耀飞. 基于深度网络的空战态势特征提取[J]. 系统仿真学报, 2018, 29(1):98-112. LI G L, MA Y F. Feature extraction algorithm of air combat situation based on deep neural networks[J]. Journal of System Simulation, 2018, 29(1):98-112(in Chinese). [32] 荣明, 杨镜宇. 基于深度学习的战略威慑决策模型研究[J]. 指挥与控制学报, 2017, 3(1):44-47. RONG M, YANG J Y. Strategic deterrence decision model based on deep learning[J]. Journal of Command and Control, 2017, 3(1):44-47(in Chinese). [33] 周来, 靳晓伟, 郑益凯. 基于深度强化学习的作战辅助决策研究[J].空天防御, 2018, 1(1):31-35. ZHOU L, JIN X W, ZHENG Y K. Research on operational decision support based on deep reinforcement learning[J]. Air and Space Defense, 2018, 1(1):31-35(in Chinese). [34] DONG X W, LI Q D, ZHAO Q L, et al. Time-varying group formation analysis and design for general linear multi-agent systems with directed topologies[J]. International Journal of Robust and Nonlinear Control, 2017, 27(9):1640-1652. [35] DONG X W, HU G Q. Time-varying formation tracking for linear multi-agent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7):3658-3664. [36] HUA Y Z, DONG X W, HU G Q, et al. Distributed time-varying output formation tracking for heterogeneous linear multi-agent systems with a non-autonomous leader of un-known input[J]. IEEE Transactions on Automatic Control, 2019, 64(10):4292-4299. [37] 吴钟博, 易建强. 无人机编队支撑网络的协同通信中继策略研究[J]. 航空学报, 2020, 41(S2):724319. WU Z B, YI J Q. Research on cooperative communication relay selection method of UAV formation support networks[J]. Acta Aeronautica et Astronautica Sinica,2020,41(S2):724319(in Chinese). [38] 姜龙亭, 魏瑞轩, 张启瑞, 等. 基于群智机理的集群防碰撞控制[J]. 航空学报, 2020, 41(S2):724294. JIANG L T, WEI R X, ZHANG Q R, et al. Anti-collision control of uavs based on swarm intelligence mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724291(in Chinese). |