[1] MANGOLD N, BARATOUX D, WITASSE O, et al.Mars:A small terrestrial planet[J]. The Astronomy and Astrophysics Review, 2016, 24(1):42-52. [2] LAKDAWALLA E. The design and engineering of curiosity[M].Berlin:Springer International Publishing, 2018:138-184. [3] 高海波, 郑军强, 刘振, 等. 轮-步复合式火星车移动系统设计及分析[J]. 机械工程学报, 2019, 55(1):1-16. GAO H B, ZHENG J Q, LIU Z, et al. Design and performance of a wheel-legged mobility system of mars rover[J]. Journal of Mechanical Engineering, 2019, 55(1):1-16(in Chinese). [4] WONG C Y, TURKER K, SHARF I, et al. Posture reconfiguration and navigation maneuvers on a wheel-Legged hydraulic robot[J]. Springer Tracts in Advanced Robotics, 2015, 105(1):215-228. [5] CORDES F, KIRCHNER F, BABU A, et al. Designand field testing of a rover with an actively articulated suspension system in a Mars analog terrain[J]. Journal of Field Robotics, 2018, 35(7):1149-1181. [6] PENG H, WANG J, SHEN W, et al. Cooperative attitude control for a wheel-legged robot[J]. Peer to Peer Networking and Applications, 2019, 12(6):1741-1752. [7] 马芳武, 倪利伟, 吴量, 等. 轮腿式全地形移动机器人位姿闭环控制[J]. 吉林大学学报(工学版), 2019, 49(6):1745-1755. MA F W, NI L W, WU L, et. Position and attitude closed loop control of wheel-legged all terrain mobile robot[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6):1745-1755. [8] SHRIVASTAVA S, KARSAI A, AYDIN Y O, et al. Material remodeling and unconventional gaits facilitate locomotion of a robophysical rover over granularterrain[J]. Science Robotics, 2020, 42(5):3499. [9] CORDES F, BABU A, KIRCHNER F. Static force distribution and orientation control for a rover with an actively articulated suspension system[C]//2017 IEEE/RSJ Internationl Conference on Intelligent Robotsand Systems.Piscataway:IEEE Press, 2017:5219-5224. [10] MORIHIRO Y, SAITO M, TAKAHASHI N, et al. Model predictive posture control considering zero moment point for three-dimensional motion of leg/wheel mobile robot[C]//The Society of Instrument and Control Engineers Annual Conference, 2017:435-439. [11] HYON S, IDA Y, ISHIKAWA J, et al. Whole-body locomotion and posture control on a torque-controlled hydraulic rover[C]//2019 IEEE/RSJ International conference on Intelligent Robots and Systems.Piscataway:IEEE Press, 2019:4587-4594. [12] SUN G J, LI J H, CHEN S M, et al. The satellite attitude control law design based on machine learning[C]//Computer and Information Technology, 2014:741-746. [13] GOHER K M, FADLALLAH S. Control of a two-wheeled machine with two-directions handling mechanism using PID and PD-FLC algorithms[J]. International Journal of Automation and Computing, 2019, 16(4):511-533. [14] SU Y, WANG T, ZHANG K, et al. Adaptive nonlinear control algorithm for a self-balancing robot[J]. IEEE Access, 2020, 8(1):3751-3760. [15] 安航, 鲜斌. 无人直升机的姿态增强学习控制设计与验证[J]. 控制理论与应用, 2019, 36(4):15-23. AN H, XIAN B. Attitude reinforcement learning control of an unmanned helicopter with verification[J]. Control Theory and Applications, 2019, 36(4):15-23(in Chinese). [16] SERAJI H, COLBAUGH R. Force tracking in impe-dance control[J]. The International Journal of Robotics Research, 1997, 16(1):97-117. [17] 刘智光, 于菲, 张靓, 等. 基于模糊自适应阻抗控制的机器人接触力跟踪[J]. 工程设计学报, 2015, 22(6):569-574, 588. LIU Z G, YU F, ZHANG L, et al. Force tracking research for robot based on fuzzy adaptive impedance control algorithm[J]. Chinese Journal of Engineering Design, 2015, 22(6):569-574, 588(in Chinese). [18] 甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34(10):2134-2142. GAN Y H, DUAN J J, DAI X Z. Adaptive variable impedance control for robot force tracking in unstructured environment[J]. Control and Decision, 2019,34(10):2134-2142(in Chinese). [19] 饶巍林, 彭晋民, 阮玉镇, 等. 单神经元自适应PID的机器人恒力控制研究[J]. 机械科学与技术, 2020, 39(10):1593-1599. RAO W L, PENG J M, RUAN Y Z, et al. Research on constant force control of robot using single neuron adaptive[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10):1593-1599(in Chinese). [20] LI G, HUANG H, LI B, et al. Robust adaptive force tracking impedance control for robotic capturing of unknown objects[C]//12th International Conference on Intelligent Robotics and Applications, 2019:677-688. [21] VUKOBRATOVI M, FRANK A A, JURICI D. On the stability of biped locomotion[J]. IEEE Transactions on Bio Medical Engineering, 1970, 17(1):25-36. [22] GHASEMPOOR A, SEPEHRI N. A measure of stability for mobile manipulators with application to heavy-duty hydraulic machines[J]. Journal of Dynamic Systems Measurement and Control-transactions of The Asme, 1998, 120(3):360-370. [23] PAPADOPOULOS E, REY D A. The force-angle measure of tipover stability margin for mobile manipulators[J]. Vehicle System Dynamics, 2000, 33(1):29-48. [24] YONEDA K, HIROSE S. Three-dimensional stability criterion of integrated locomotion and manipulation[J]. Journal of Robotics and Mechatronics, 1997, 9(4):267-274. [25] CAI X, HE J, GAO F. Kinematic modeling and simulation of a leg-wheel robot for unexplored rough terrain environment[C]//IFToMM International Conference on Mechanisms, Transmissions and Appl-ications, 2020:464-473. [26] HIRT C, CLAESSENS S J, KUHN M, et al. Kilometer-resolution gravity field of Mars:MGM2011[J]. Planetary & Space Science, 2012, 67(1):147-154. |