[1] |
HEIDT H, PUIG-SUARI J, MOORE A, et al. CubeSat:A new generation of picosatellite for education and industry low-cost space experimentation[C]//14th Annual AIAA/USU Conference on Small Satellites. Reston:AIAA, 2000.
|
[2] |
SHIROMA W A, MARTIN L K, AKAGI J M, et al. CubeSats:A bright future for nanosatellites[J]. Open Engineering, 2011, 1(1):9-15.
|
[3] |
CHIN A, COELHO R, NUGENT R, et al. CubeSat:The pico-satellite standard for research and education[C]//AIAA SPACE 2008 Conference & Exposition. Reston:AIAA, 2008.
|
[4] |
ZHANG H, GURFIL P. Nanosatellite cluster keeping under thrust uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5):1406-1414.
|
[5] |
POGHOSYAN A, GOLKAR A. CubeSat evolution:Analyzing CubeSat capabilities for conducting science missions[J]. Progress in Aerospace Sciences, 2017, 88:59-83.
|
[6] |
Planet Labs Inc. Planet imagery and archive[EB/OL].[2019-11-01]. https://www.planet.com/products/planet-imagery/.
|
[7] |
PERAL E, TANELLI S, HADDAD Z, et al. Raincube:A proposed constellation of precipitation profiling radars in CubeSat[C]//2015 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE Press, 2015:1261-1264.
|
[8] |
CHEN H R, LIU J K, LONG L, et al. Lunar far side positioning enabled by a CubeSat system deployed in an Earth-Moon halo orbit[J]. Advances in Space Research, 2019, 64(1):28-41.
|
[9] |
BANDYOPADHYAY S, FOUST R, SUBRAMANIAN G P, et al. Review of formation flying and constellation missions using nanosatellites[J]. Journal of Space and Rockets, 2016, 53(3):567-578.
|
[10] |
WEN C X, ZHANG H, GURFIL P. Orbit injection considerations for cluster flight of nanosatellites[J]. Journal of Spacecraft and Rockets, 2014, 52(1):196-208.
|
[11] |
VILLELA T, COSTA C A, BRANDÃO A M, et al. Towards the thousandth CubeSat:A statistical overview[J]. International Journal of Aerospace Engineering, 2019(3):1-13.
|
[12] |
RIESING K. Orbit determination from two line element sets of ISS-deployed cubesats[C]//29th Annual AIAA/USU Conference on Small Satellites. Reston:AIAA, 2015.
|
[13] |
项军华, 张育林. 基于卫星可靠度和MTTR星座空间备份策略设计[J]. 系统工程与电子技术, 2007, 29(9):1576-1580. XIANG J H, ZHANG Y L. Design of spatial backup strategy for constellation based on satellite reliability and MTTR[J]. Systems Engineering and Electronics, 2007, 29(9):1576-1580(in Chinese).
|
[14] |
DU JONCHAY T S, HO K. Impact evaluation of an orbital depot on on-orbit servicing infrastructures dedicated to modularized earth-orbiting platforms[J]. Acta Astronautica, 2017, 132:192-203.
|
[15] |
胡敏, 宋旭民, 杨雪榕. 基于Petri网的Walker导航星座备份策略研究[J]. 航天器工程, 2017, 26(2):14-21. HU M, SONG X M, YANG X R. Research on spare stratege of Walker navigation constellation based on Petri net[J]. Spacecraft Engineering, 2017, 26(2):14-21(in Chinese).
|
[16] |
ZHANG H, MENG D B, ZONG Y Y, et al. A modeling and analysis strategy of constellation availability using on-orbit and ground added launch backup and its application in the reliability design for a remote sensing satellite[J]. Advances in Mechanical Engineering, 2018, 10(4):1-6.
|
[17] |
GU J Y, ZHANG G Q, LI K W. Efficient aircraft spare parts inventory management under demand uncertainty[J]. Journal of Air Transport Management, 2015, 42:101-109.
|
[18] |
CASTET J F, SALEH J H. Satellite and satellite subsystems reliability:Statistical data analysis and modeling[J]. Reliability Engineering & System Safety, 2009, 94(11):1718-1728.
|
[19] |
GUO J, MONAS L, GILL E. Statistical analysis and modelling of small satellite reliability[J]. Acta Astronautica, 2014, 98(1):97-110.
|
[20] |
CASTET J F, SALEH J H. Satellite reliability:Statistical data analysis and modeling[J]. Journal of Spacecraft and Rockets, 2009, 46(5):1065-1076.
|
[21] |
CROWDER M J, KIMBER A C, SMITH R L, et al. Statistical analysis of reliability data[M]. London:Routledge,2017:16-27.
|
[22] |
ERIK K. Nanosats database[EB/OL].[2018-11-01]. https://www.nanosats.eu/.
|