[1] YOON S, CHADERJIAN N M, PULLIAM T H, et al. Effect of turbulence modeling on hovering rotor flows:AIAA-2015-2766[R]. Reston, VA:AIAA, 2015. [2] HARIHARAN N, EGOLF A, SANKAR L. Simulation of rotor in hover:Current state and challenges:AIAA-2014-0041[R]. Reston, VA:AIAA, 2014. [3] ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method of predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics, 2018, 31(2):214-224. [4] 朱国林, 徐庆新. 计算流体力学并行计算技术研究综述[J]. 空气动力学学报, 2002, 20(1):1-6. ZHU G L, XU Q X. Review on parallel computation technique on computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2002, 20(1):1-6(in Chinese). [5] ROOSE D, DRIESSCHE R V, 邹辉, 等. 并行计算机和计算流体力学并行算法[J]. 力学进展, 1998, 28(1):111-125. ROOSE D, DRIESSCHE R V, ZOU H, et al. Parallel computers and parallel algorithms for CFD[J]. Advances in Mechanics, 1998, 28(1):111-125(in Chinese). [6] WANG G, JIANG Y W, YE Z Y. An improved LU-SGS implicit scheme for high reynolds number flow computations on hybrid unstructured mesh[J]. Chinese Journal of Aeronautics, 2012, 25(1):33-41. [7] 黄宇, 阎超, 袁武. 适用于混合网格的改进雅可比迭代法及其应用[J]. 北京航空航天大学学报, 2016, 42(3):551-561. HUANG Y, YAN C, YUAN W. Improved Jacobi iterative method for hybrid grid and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):551-561(in Chinese). [8] WISSINK A M, LYRINTZIS A S, STRAWN R C. Parallelization of a three-dimensional flow solver for Euler rotorcraft aerodynamics predictions[J]. AIAA Journal, 1996, 34(11):2276-2283. [9] LUO H, SHAROV D, BAUM J D. Parallel unstructured grid GMRES+LU-SGS method for turbulent flows:AIAA-2003-273[R]. Reston, VA:AIAA, 2003. [10] OTERO E, ELIASSON P. Improving the performance of the CFD code edge using LU-SGS and line-implicit methods[C]//CEAS 2013 the International Conference of the European Aerospace Societies, 2013. [11] 徐丽, 杨爱明, 丁珏, 等. 用隐式方法和WENO格式计算悬停旋翼跨声速无粘流场[J]. 计算力学学报, 2010, 27(4):607-612. XU L, YANG A M, DING Y, et al. Numerical simulation on the inviscid flowfield of transonic hovering rotor using implicit method and WENO schemes[J]. Chinese Journal of Computational Mechanics, 2010, 27(4):607-612(in Chinese). [12] 叶舟, 史勇杰, 徐国华. 耦合高效配平策略的旋翼气动特性分析方法[J]. 航空动力学报, 2017, 32(4):882-889. YE Z, SHI Y J, XU G H. Analytical method of rotor aerodynamic characteristics by coupling a high-efficiency trim strategy[J]. Journal of Aerospace Power, 2017, 32(4):882-889(in Chinese). [13] 吴琪, 招启军, 林永峰, 等. 旋翼跨音速非定常黏性绕流的高效CFD模拟方法[J]. 南京航空航天大学学报, 2015, 47(2):212-219. WU Q, ZHAO Q J, LIN Y F, et al. Highly-efficient CFD method for predicting unsteady transonic viscous flow around rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2):212-219(in Chinese). [14] CHEN R F, WANG Z J. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245. [15] 余婧, 郝东, 周铸, 等. 大规模多块结构网格并行任务负载平衡算法[C]//第十七届全国计算流体力学会议, 2017. YU J, HAO D, ZHOU Z, et al. Load balance algorithms of parallel task for large scale multi-block grids[C]//The 17th National CFD Conference, 2017(in Chinese). [16] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(1):376-417. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/fight-control coupling methods in virtual ight simulations[J]. Advances in Mechanics, 2014, 44(1):376-417(in Chinese). [17] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover:NASA TM 81232[R]. Washington, D.C.:NASA, 1981. [18] SRINIVASAN G R, BAEDER J D, OBAYASHI S, et al. Flowfield of a lifting rotor in hover:A Navier-Stokes simulation[J]. AIAA Journal, 1992, 30(10):2371-2378. [19] MOHD N, BARAKOS G N. Computational aerodynamics of hovering helicopter rotors[J]. Journal Mecanikal, 2012, 34(1):16-46. [20] 李震, 张锡文, 何枫. 基于速度梯度张量的四元分解对若干涡判据的评价[J]. 物理学报, 2014, 63(5):1-7. LI Z, ZHANG X W, HE F. Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor[J]. Acta Physica Sinica, 2014, 63(5):1-7(in Chinese). [21] EGEBERG T F. Onset and progressiong of vortical structures for a surface combatant at drift angles 0, 10 and 20 degrees[D]. Trondheim:Norwegian University of Science and Technology, 2013. |