[1] 龚荣亮. 飞机轮胎的结构及常见故障探究[J]. 中国高新技术企业, 2011(27):81-82. GONG R L. Aircrafttire structure and common faults[J]. China High Technology Enterprises, 2011(27):81-82(in Chinese).
[2] 张建敏. 飞机轮胎爆破模式浅析[J]. 力学季刊, 2014, 35(1):139-148. ZHANG J M. A brief study on damaging effects of aeroplane tire and wheel failures[J]. Chinese Quarterly of Mechanics, 2014, 35(1):139-148(in Chinese).
[3] 周易之, 舒平. 起飞阶段冲偏出跑道事故预防分析[J]. 中国安全科学学报, 2009, 19(1):38-44. ZHOU Y Z, SHU P. Analysis on prevention of runway overrun/excursion accident during takeoff[J]. China Safety Science Journal, 2009, 19(1):38-44(in Chinese).
[4] 周应求. 航空轮胎爆破的原因分析及其预防措施[J]. 化工新型材料, 1980(10):1-6. ZHOU Y Q. Analysis and preventive measures of aviation tire blasting[J]. New Chemical Materials, 1980(10):1-6(in Chinese).
[5] 霍志勤, 罗帆. 近十年中国民航事故及事故征候的统计分析[J]. 中国安全科学学报, 2006, 16(12):65-71. HUO Z Q, LUO F. Statistic analysis on accidents and incidents in the last decade in China civil aviation[J]. Chinese Safety Science Journal, 2006, 16(12):65-71(in Chinese).
[6] HEFNY A F, EID H O, AL-BASHIR M, et al. Blast injuries of large tyres:Case series[J]. International Journal of Surgery, 2010, 8(2):151-154.
[7] European Aviation Safety Agency. Notice of proposed amendment (NPA) 2013-02, Protection from debrisimpacts[S]. 2013.
[8] Joint Aviation Authorities. JAA temporary guidance material, TGM/25/08(issue2), Wheel and tire failuremodel[S]. 2002.
[9] 白杰, 董兴普, 王伟. 外来物损伤条件下航空轮胎爆破碎片产生机理及速度分析[J]. 橡胶工业, 2011, 58(11):658-661. BAI J, DONG X P, WANG W. Formation mechanism and speed of aircraft tire burst debris under FOD[J]. China Rubber Industry, 2011, 58(11):658-661(in Chinese).
[10] 黄喜平, 陆波, 曹丹青. 在飞机起落架轮胎爆破时主起落架系统安全性分析方法[J]. 流体传动与控制, 2013(5):22-24. HUANG X P, LU B, CAO D Q. Method of main landing gear system security analysis when airplane landing gear's tire is bursting[J]. Fluid Power Transmission and Control, 2013(5):22-24(in Chinese).
[11] 谢孟恺, 周昌明, 范平. 轮胎爆破下飞机液压能源系统安全性分析方法[J]. 航空科学技术, 2015, 26(9):46-49. XIE M K, ZHOU C M, FAN P. Aircraft hydraulic system safety analysis method for tire burst[J]. Aeronautical Science and Technology, 2015, 26(9):46-49(in Chinese).
[12] 李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都:西南交通大学, 2012. LI T. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu:Southwest Jiaotong University, 2012(in Chinese).
[13] 邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展, 1997, 27(1):20-39. XING J T, ZHOU S, CUI E J. A survey on the fluid-solid interaction mechanics[J]. Advances in Mechanics, 1997, 27(1):20-39(in Chinese).
[14] STEIN K, TEZDUYAR T E, BENNEY R. Automatic mesh update with the solid-extension mesh moving technique[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(21-22):2019-2032.
[15] 陈锋, 王春江, 周岱. 流固耦合理论与算法评述[J]. 空间结构, 2012, 18(4):55-63. CHEN F, WANG C J, ZHOU D. Review of theory and numerical methods of fluid-structure interaction[J]. Spatial Structures, 2012,18(4):55-63(in Chinese).
[16] WALL W A, GERSTENBERGER A, GAMNITZER P, et al. Large deformation fluid-structure interaction-Advances in ALE methods and new fixed grid approaches[C]//Lecture Notes in Computational Science and Engineering, 2006, 53:195-232.
[17] 何涛. 流固耦合新算法研究及其气动弹性应用[D]. 上海:上海交通大学, 2013. HE T. Novelpartitioned coupling algorithms for fluid-structure interaction with applications to aero elasticity[D]. Shanghai:Shanghai Jiao Tong University, 2013(in Chinese).
[18] 刘学强, 李青, 柴建忠, 等. 一种新的动网格方法及其应用[J]. 航空学报, 2008, 29(4):817-822. LIU X Q, LI Q, CHAI J Z, et al. A new dynamic grid algrithm and its application[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):817-822(in Chinese).
[19] MURMAN S M, AFTOSMIS M J, BERGER M J. Implicit approaches for moving boundaries in a 3-D Cartesian method:AIAA-2003-1119[R]. Reston, VA:AIAA, 2003.
[20] LIEFVENDAHL M, TROENG C. Deformation and regeneration of the computational grid for CFD with moving boundaries:AIAA-2007-1458[R]. Reston, VA:AIAA, 2007.
[21] HASSAN O, MORGAN K, WEATHERILL N. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 365(1859):2531-2552.
[22] 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7):1389-1395. ZHOU X, LI S X, CHEN B. Spring-interpolation approach for generating unstructured dynamic meshes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1389-1395(in Chinese).
[23] FAST P, SHELLEY M J. A moving overset grid method for interface dynamics applied to non-Newtonian Hele-Shaw flow[J]. Journal of Computational Physics, 2004, 195(1):117-142.
[24] 辛颖. Fluent UDF方法在数值波浪水槽中的应用研究[D]. 大连:大连理工大学, 2013. XIN Y. Applicationof fluent UDF method in the study of numerical wave tank[D]. Dalian:Dalian University of Technology, 2013(in Chinese).
[25] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese).
[26] 杨小权, 杨爱明, 孙刚. 一种强耦合Spalart-Allmaras湍流模型的RANS方程的高效数值计算方法[J]. 航空学报, 2013, 34(9):2007-2018. YANG X Q, YANG A M, SUN G. An efficient numerical for coupling the RANS equations with Spalart-Allmaras turbulence model equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2007-2018(in Chinese).
[27] USA Federal Aviation Administration. FARS, PART25-airworthiness standards:Transport category airplanes[S]. 2000.
[28] 赵雪娥, 孟亦飞, 刘秀玉. 燃烧与爆炸理论[M]. 北京:化学工业出版社, 2011:194. ZHAO X E, MENG Y F, LIU X Y. Combustion and explosion theory[M]. Beijing:Chemical Industry Press, 2011:194(in Chinese). |