ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2018, Vol. 39 ›› Issue (1): 21201-021201.doi: 10.7527/S1000-6893.2017.021201
• Review • Previous Articles Next Articles
DING Junhao1,2, LI Heng1,2, BIAN Tianjun1,2, MA Jun1,2
Received:
2017-02-28
Revised:
2017-05-08
Online:
2018-01-15
Published:
2018-01-15
Supported by:
CLC Number:
DING Junhao, LI Heng, BIAN Tianjun, MA Jun. Electroplasticity and electrically-assisted forming: A critical review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(1): 21201-021201.
[1] 曹春晓. 一代材料技术, 一代大型飞机[J]. 航空学报, 2008, 29(3):701-706. CAO C X. One generation of material technology, one generation of large aircraft[J]. Acta Aeronautica et Astronautica Sinca, 2008, 29(3):701-706(in Chinese).[2] 杨健. 钛合金在飞机上的应用[J]. 航空制造技术, 2006(11):41-43. YANG J. Application of titanium alloy in aircraft[J]. Aeronautical Manufacturing Technology, 2006(11):41-43(in Chinese).[3] 郭良刚, 杨合, 邸伟佳, 等. TC4钛合金薄壁带筋锥形环辗轧充填规律[J]. 航空学报, 2015, 36(8):2798-2806. GUO L G, YANG H, DI W J, et al. Filling rules in thin-walled and ribbed conical ring rolling for TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinca, 2015,36(8):2798-2806(in Chinese).[4] OKAZAKI K, KAGAWA M, CONRAD H. An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium[J]. Materials Science & Engineering, 1980, 45(2):109-116.[5] TROITSKⅡ O A, LIKHTMAN V I. The anisotropy of the action of electron and γ radiation on the deformation of zinc single crystals in the brittle state[J]. Soviet Physics Doklady, 1963, 8:332-334.[6] TROITSKⅡ O A. The electroplastic effect in metals[J]. Strength of Materials, 1984, 16(2):277-281.[7] ROH J H, SEO J J, HONG S T, et al. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current[J]. International Journal of Plasticity, 2014, 58(2014):84-99.[8] SPITSYN V I, TROITSKⅡ O A. Simulation of the thermal and pinch effects of pulsed current on the plastic deformation of a metal[J]. Soviet Physics Doklady, 1975, 20:132-134.[9] TROITSKⅡ O A, SPITSYN V I, SOKOLOV N V, et al. Electroplastic drawing of stainless steel[J]. Soviet Physics Doklady, 1977, 22:1082-1085.[10] STASHENKO V I, TROITSKⅡ O A, SPITSYN V I.Action of current pulses on zinc single crystals during creep[J]. Physica Status Solidi, 1983, 79(2):549-557.[11] YE X, TSE Z T H, TANG G, et al. Effect of electropulsing treatment on microstructure and mechanical properties of cold-rolled pure titanium strips[J]. Journal of Materials Processing Technology, 2015, 22(2015):27-32.[12] 宋辉. 脉冲电流处理对钛合金板材组织和性能影响的研究[D]. 哈尔滨:哈尔滨工业大学, 2009:28-30. SONG H. Study on the effects of electropulsing on microstructures and properties of titanium alloys sheet[D]. Harbin:Harbin Institute of Technology, 2009:28-30(in Chinese).[13] YE X, LI X, SONG G, et al. Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses[J]. Journal of Alloys & Compounds, 2014, 616(2014):173-183.[14] QIAO S, LI Y, LI Y, et al. Damagehealing of aluminum alloys by DC. electropulsing and evaluation by resistance[J]. Rare Metal Materials & Engineering, 2009, 38(4):570-573.[15] SPRECHER A F, MANNAN S L, CONRAD H. On the mechanisms for the electroplastic effect in metals[J]. Acta Metallurgica, 1986, 34(7):1145-1162.[16] TAO Z, YANG H, LI H,et al. Quasi-static tensile behavior of large-diameter thin-walled Ti-6Al-4V tubes at elevated temperature[J]. Chinese Journal of Aeronautics, 2016, 29(2):542-553.[17] WANG X, XU J, SHAN D, et al. Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension[J]. International Journal of Plasticity, 2016, 85(2016):230-257.[18] KIM M S, VINH N T, YU H H, et al. Effect of electric current density on the mechanical property of advanced high strength steels under quasi-static tensile loads[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(6):1207-1213.[19] SALANDRO W A, BUNGET C,MEARS L. Modeling and quantification of the electroplastic effect when bending stainless steel sheet metal[C]//SALANDRO W A. ASME 2010 International Manufacturing Science and Engineering Conference. Wisconsin, SC:Clemson University, 2010:581-590.[20] ROSS C D, KRONENBERGER T J, ROTH J T. Effect of dc on the formability of Ti-6Al-4V[J]. Journal of Engineering Materials & Technology, 2009, 131(3):1-11.[21] PERKINS T A, KRONENBERGER T J, ROTH J T. Metallic forging using electrical flow as an alternative to warm/hot working[J]. Journal of Manufacturing Science & Engineering, 2007, 129(1):84-94.[22] SALANDRO W A, JONES J J, BUNGET C, et al.Electrically assisted forming:Modeling and control[M]. Springer International Publishing, 2015:23-36.[23] XIE H, DONG X, LIU K, et al. Experimental investigation on electroplastic effect of DP980 advanced high strength steel[J]. Materials Science & Engineering:A, 2015, 637(2015):23-28.[24] MAGARGEE J. Characterization of flow stress for commercially pure titanium subjected to electrically assisted deformation[J]. Journal of Engineering Materials & Technology, 2013, 135(4):1-10.[25] GOLDMAN P D, MOTOWIDLO L R, GALLIGAN J M.The absence of an electroplastic effect in lead at 4.2K[J]. Scripta Metallurgica, 1981, 15(4):353-356.[26] SPRECHER A F, MANNAN S L, CONRAD H. On the temperature rise associated with the electroplastic effect in titanium[J]. Scripta Metallurgica, 1983, 17(6):769-772.[27] OKAZAKI K, KAGAWA M, CONRAD H.A study of the electroplastic effect in metals[J]. Scripta Metallurgica, 1978, 12(11):1063-1068.[28] OKAZAKI K, KAGAWA M, CONRAD H. Additional results on the electroplastic effect in metals[J]. Scripta Metallurgica, 1979, 13(4):277-280.[29] OKAZAKI K, KAGAWA M, CONRAD H. Effects of strain rate, temperature and interstitial content on the electroplastic effect in titanium[J]. Scripta Metallurgica, 1979, 13(6):473-477.[30] SALANDRO W A, BUNGET C J, MEARS L.A thermal-based approach for determining electroplastic characteristics[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012, 226(5):775-788.[31] CONRAD H, GUO Z, SPRECHER A F.Effects of electropulse duration and frequency on grain growth in Cu[J]. Scripta Metallurgica et Materialia, 1990, 24(2):359-362.[32] KRAVCHENKO V Y.Effect of directed electron beam on moving dislocations[J]. Soviet Physics JETP, 1967, 24:1135-1142.[33] 刘渤然, 张彩碚, 赖祖涵. 冷轧态Al-Li-Cu-Mg-Zr合金在脉冲电流作用下超塑形变中的位错形态[J]. 材料研究学报, 2000, 14(2):218-220. LIU B R, ZHANG C P, LAI Z H. Dislocation configurations in cold rolled Al-Li-Cu-Mg-Zr superplastic alloy under electropulsing[J]. Chinese Journal of Materials Research, 2000, 14(2):218-220(in Chinese).[34] GARAY J E, GLADE S C,ANSELMI-TAMBURINI U, et al. Electric current enhanced defect mobility in Ni3Ti intermetallics[J]. Applied Physics Letters, 2004, 85(4):573-575.[35] GALLIGAN J M, LIN T H, PANG C S.Electron-dislocation interaction in copper[J]. Physical Review Letters, 1977, 38(38):405-407.[36] MOLOTSKⅡ M, FLEUROV V V.Magnetic effects in electroplasticity of metals[J]. Physical Review B:Condensed Matter, 1995, 52(22):15829-15834.[37] 李桂荣, 王宏明, 李沛思,等. 磁致塑性效应下的位错动力学机制[J]. 物理学报, 2015, 64(14):337-346. LI G R, WANG H M, LI P S, et al. Mechanism of dislocation kinetics under magnetoplastic effect[J]. Acta Physica Sinica, 2015, 64(14):337-346(in Chinese).[38] 王宏明, 朱弋, 李桂荣, 等. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为[J]. 物理学报, 2016, 65(14):191-201. WANG H M, ZHU G, LI G R, et al. Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress[J]. Acta Physica Sinica, 2016, 65(14):191-201(in Chinese).[39] GUO L, FAN X, YU G, et al. Microstructure control techniques in primary hotworking of titanium alloy bars:A review[J]. Chinese Journal of Aeronautics, 2016, 29(1):30-40.[40] LIU K, DONG X, XIE H,et al. Influence of pulsed current on deformation mechanism of AZ31B sheets during tension[J]. Journal of Alloys & Compounds, 2016, 676(2016):106-112.[41] LIU K, DONG X, XIE H,et al. Effect of pulsed current on the deformation behavior of AZ31B magnesium alloy[J]. Materials Science & Engineering:A, 2015, 623(2015):97-103.[42] CONRAD H.Effects of electric current on solid state phase transformations in metals[J]. Materials Science & Engineering:A, 2000, 287(2):227-237.[43] XU X, ZHAO Y, MA B,et al. Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing[J]. Materials Science & Engineering:A, 2014, 612(2014):223-226.[44] SONG H, WANG Z J.Grain refinement by means of phase transformation and recrystallization induced by electropulsing[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(21):353-357.[45] ZHOU Y, ZHANG W, WANG B,et al. Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing[J]. Journ al of Materials Research, 2002, 17(8):2105-2111.[46] 毛卫民. 金属的再结晶与晶粒长大[M]. 北京:冶金工业出版社, 1994:56-57. MAO W M. Recrystallization and grain growth of metals[M]. Beijing:Metallurgy Industry Press, 1994:56-57(in Chinese).[47] YE X, TSE Z T H, TANG G, et al. Influence of electropulsing treatment on microstructure and mechanical properties of Ti-6Al-4V alloy strip with lamellar microstructure[J]. Materials Science & Engineering:A, 2014, 622(2014):1500-1512.[48] YE X, TSE Z T H, TANG G. Mechanical properties and tensile fracture of Ti-Al-V alloy strip under electropulsing induced phase change[J]. Journal of Materials Research, 2014, 30(2):206-223.[49] LI X, WANG S, ZHAO S, et al. Effect of pulse current on the tensile deformation of SUS304 stainless steel[J]. Journal of Materials Engineering & Performance, 2015, 24(12):5065-5070.[50] 马炳东. 脉冲电流对高强度钢组织与力学性能的影响及数值模拟分析[D]. 吉林:吉林大学, 2014:105-107. MA B D. Effects of electropulsing on the microstructure and mechanical properties of the high strength steels along with the numerical simulation analysis[D]. Jilin:Jilin University, 2014:105-107(in Chinese).[51] MA B, ZHAO Y, MA J, et al. Formation of local nanocrystalline structure in a boron steel induced by electropulsing[J]. Journal of Alloys & Compounds, 2013, 549(2013):77-81.[52] 李国栋. 高密度电脉冲处理对镍基高温合金组织及性能的影响[D]. 沈阳:东北大学, 2008:42-44. LI G D. Effects of high density pulse current on microstrueture and meehanieal property of Niekel-base superalloy[D]. Shenyang:Northeastern University, 2008:42-44(in Chinese).[53] WU W, WANG Y, WANG J, et al. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy[J]. Materials Science & Engineering:A, 2014, 608(2014):190-198.[54] ZHAN L, MA Z, ZHANG J, et al. Stress relaxation ageing behaviour and constitutive modelling of a 2219 aluminium alloy under the effect of an electric pulse[J]. Journal of Alloys & Compounds, 2016, 679(2016):316-323.[55] LIU Y, HUANG M, MA Z, et al. Influence of the low-density pulse current on the ageing behavior of AA2219 aluminum alloy[J]. Journal of Alloys & Compounds, 2016, 673(2016):358-363.[56] 武伟超. 电脉冲对2024铝合金力学性能及微观组织影响研究[D]. 西安:西北工业大学, 2015:67-72. WU W C. Effect of electrical pulse processing on the microstructures and material properties of 2024 aluminum alloy[D]. Xi'an:Northwestern Polytechnical University, 2015:67-72(in Chinese).[57] KIM M J, LEE M G,HARIHARAN K, et al. Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension[J]. International Journal of Plasticity, 2016:1-23.[58] SONG H, WANG Z J.Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science & Engineering:A, 2008, 490(2008):1-6.[59] CONRAD H, SPRECHER A F, CAO W D, et al. Electroplasticity-the effect of electricity on the mechanical properties of metals[J]. JOM, 1990, 42(42):28-33.[60] CONRAD H, WHITE J, CAO W D, et al. Effect of electric current pulses on fatigue characteristics of polycrystalline copper[J]. Materials Science & Engineering:A, 1991, 145(1):1-12.[61] ZHOU Y, GUO J, GAO M,et al. Crack healing in a steel by using electropulsing technique[J]. Materials Letters, 2004, 58(11):1732-1736.[62] SONG H, WANG Z J. Effect of electropulsing on dislocation mobility of titanium sheet[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7):1599-1605.[63] NGUYEN-TRAN H D, OH H S, HONG S T, et al. A review of electrically-assisted manufacturing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(4):365-376.[64] 唐国翌, 郑明新, 朱永华, 等. 电塑性加工技术及其工程应用[J]. 钢铁, 1998, 33(9):35-37. TANG G Y, ZHENG X M, ZHU Y H, et al. Electroplastic effect and its engineering application[J]. Iron & Steel, 1998, 33(9):35-37(in Chinese).[65] 宋令慧, 王守仁, 赵宰炯. 连铸连轧镁合金AZ41微观结构与摩擦磨损性能[J]. 航空学报, 2014, 35(6):1733-1739. SONG L H, WANG S R, ZHAO Z J. Microstructure and friction wear properties of twin-roll casting magnesium alloy AZ41[J]. Acta Aeronautica et Astronautica Sinca, 2014, 35(6):1733-1739(in Chinese).[66] 唐国翌, 张锦, 闫允杰, 等. 电塑性加工对钢丝的摩擦学特性和表面质量的影响[J]. 钢铁, 2001, 36(3):49-51. TANG G Y, ZHANG J, YAN Y J, et al. Analysis of effect of electro-plastic wire-drawing on friction and surface morphology of the wire[J]. Iron & Steel, 2001, 36(3):49-51(in Chinese).[67] ZIMNIAK Z, RADKIEWICZ G. The electroplastic effect in the cold-drawing of copper wires for the automotive industry[J]. Archives of Civil & Mechanical Engineering, 2008, 8(8):173-179.[68] 姚可夫, 余鹏, 郑明新, 等. HOCr17Ni6Mn3钢丝电塑性拉拔的研究[J]. 金属学报, 2000, 36(6):630-633. YAO K F, YU P, ZHENG M X, et al. Research on wire-drawing of a HOCr17Ni6Mn3 steel with high-density current pulses[J]. Acta Metallurgica Sinica, 2000, 36(6):630-633(in Chinese).[69] 周岩. TC4钛合金电塑性拉拔变形行为及机理[D]. 大连:大连理工大学, 2013:52-60. ZHOU Y. Deformation behaviour and its mechanism of TC4 during electroplastic drawing[J]. Dalian:Dalian University of Technology, 2013:52-60(in Chinese).[70] 李大龙, 于恩林. 电塑性拔丝技术及设备研制[J]. 机械设计与制造, 2014(6):112-114. LI D L, YU E L. Research on electroplastic drawing technology and equipment[J]. Machinery Design & Manufacture, 2014(6):112-114(in Chinese).[71] XU Z H, TANG G Y, TIAN S Q,et al. Research of electroplastic rolling of AZ31 Mg alloy strip[J]. Journal of Materials Processing Technology, 2007, 182(1):128-133.[72] LI X P, TANG G Y, KUANG J, et al. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling[J]. Materials Science & Engineering:A, 2014, 612(2014):406-413.[73] LI H, HU X, YANG H, et al. Anisotropic and asymmetrical yielding and its distorted evolution:modeling and applications[J]. International Journal of Plasticity, 2016, 82(2016):127-158.[74] 叶肖鑫. 高能电脉冲对生物医用钛合金制备及性能影响的研究[D]. 北京:清华大学, 2015:31-33. YE X X. The effects of high-energy electropulsing on the preparation and properteis of biomedical titanium alloy[D]. Beijing:Tsinghua University, 2015:31-33(in Chinese).[75] LU Y, QU T, PAN Z, et al. The influence of electroplastic rolling on the mechanical deformation and phase evolution of Bi-2223/Ag tapes[J]. Journal of Materials Science, 2010, 45(13):3514-3519.[76] STOLYAROV V V. Deformability and nanostructuring of TiNi shape-memory alloys during electroplastic rolling[J]. Materials Science & Engineering:A, 2009, 503(2009):18-20.[77] XIE H, DONG X, AI Z, et al. Experimental investigation on electrically assisted cylindrical deep drawing of AZ31B magnesium alloy sheet[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(1):1063-1069.[78] 毛育青, 柯黎明, 刘奋成, 等. 铝合金厚板FSW焊缝成形及金属流动行为分析[J]. 航空学报, 2016, 37(11):3546-3553. MAO Y Q, KE L M, LIU F C, et al. Weld formation and material flow behavior in FSW thick aluminum alloy plates[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3546-3553(in Chinese).[79] LONG X, KHANNA S K. Modelling of electrically enhanced friction stir welding process using finite element method[J]. Science & Technology of Welding & Joining, 2005, 10(4):482-487.[80] POTLURI H, JONES J J, MEARS L. Comparison of electrically-assisted and conventional friction stir welding processes by feed force and torque[C]//POTLURI H. ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the North American Manufacturing Research Conference. Wisconsin, SC:Clemson University, 2013:1-10.[81] SHEN Y,YU H P,RUAN X Y.Discussion and prediction on decreasing flow stress scale effect[J].Transactions of Nonferrous Metals Society of China, 2006, 16(1):132-136.[82] MAI J, PENG L, LAI X, et al. Electrical-assisted embossing process for fabrication of micro-channels on 316L stainless steel plate[J]. Journal of Materials Processing Technology, 2013, 213(2):314-321.[83] WANG X, XU J, JIANG Z, et al. Size effects on flow stress behavior during electrically-assisted micro-tension in a magnesium alloy AZ31[J]. Materials Science & Engineering:A, 2016, 659(2016):215-224.[84] FAN G, GAO L, HUSSAIN G, et al. Electric hot incremental forming:A novel technique[J]. International Journal of Machine Tools & Manufacture, 2008, 48(15):1688-1692.[85] SHI X, GAO L, KHALATBARI H,et al. Electric hot incremental forming of low carbon steel sheet:accuracy improvement[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1):241-247.[86] CHAO L, HE Y, LI H, et al. Dependence of creep age formability on initial temper of an Al-Zn-Mg-Cu alloy[J]. Chinese Journal of Aeronautics, 2016, 29(5):1445-1454. |
[1] | Jiawei FU, Zefei YANG, Yahui CAI, Xiangfan NIE, Lehua QI. Identification method for anisotropic and high strain rate plasticity of sheet metals based on heterogeneous highspeed inertial impact and principle of virtual work [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 229221-229221. |
[2] | Ziye FENG, Lixun CAI, Simiao YU. Energy⁃based J⁃integral solutions for mode⁃I cracked specimens under plane strain and plane stress [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 227671-227671. |
[3] | Xiurui WANG, Kaishang LI, Hanghang GU, Yong ZHANG, Tiwen LU, Runzi WANG, Xiancheng ZHANG. A unified criterion for high⁃low cycle fatigue life prediction based on crystal plasticity theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427300-427300. |
[4] | Feng ZHENG, Wei HUANG, Hongli JI, Jinhao QIU. Acoustic black hole effect of composite sheet structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 426453-426453. |
[5] | WANG Qiuyi, WU Yanzeng, BAO Rui. Analysis on CTOD corresponding parameters during fatigue crack growth [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526632-526632. |
[6] | ZHANG Yinuo, QIAO Hongchao, CAO Zhihe, LIANG Jinsheng, ZHAO Jibin. Microstructure characteristics of CFRP deep groove processed by water jet-guided laser processing technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525144-525144. |
[7] | LIU Xin, YANG Jingchao, LI Heng, ZHANG Yanhong, YANG Zhiwei, GU Jingfei, LI Guangjun, HUANG Dan. Critical review on tube joining by plastic deformation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525258-525258. |
[8] | CAI Jin, YAN Xue, LI Wei, MENG Qingxun. Numerical analysis of ultrasonic shot peening based on DEM-FEM coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525925-525925. |
[9] | WANG Changyu, XU Kejun, QIN Haiqin, MA Zhongyuan, XIE Jing, XIE Zhenbo. A generalized Bodner-Partom viscoplastic constitutive model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 426009-426009. |
[10] | ZOU Zhengping, ZHANG Meng, LANG Lihui. Tube bulging test based on 3D digital image correlation method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 425989-425989. |
[11] | YANG Huanping, ZHUANG Wei, WANG Yaomian, YAN Wenbin. Influence of severe plastic deformation on thermal oxidation of titanium alloys [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 424656-424656. |
[12] | WU Zhihui, NIU Gongjie, QIAN Jianping, LIU Rongzhong. Thermodynamics-based damage constitutive model and its application to damage analysis for HTPB/AP composite base bleed grain [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 223855-223855. |
[13] | LI Yuanxiao, JIAO Feng, ZHANG Shijie, ZHANG Shun, WANG Xue, TONG Jinglin. Experiment on high and low frequency compound vibration-assisted drilling of CFRP/titanium alloy laminated structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524802-524802. |
[14] | CHENG Hui, FAN Xintian, XU Guanhua, YANG Yu, WANG Lan. State of the art of precise interference-fit technology for composite structures in aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524876-524876. |
[15] | CUI Xiaolei, ZHAN Mei, GAO Pengfei, LI Rui, WANG Xianxian, LEI Yudong, MA Fei, ZHANG Hongrui. Advances in numerical simulation of plastic forming of thin-walled components considering blank geometry and performance fluctuation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 525145-525145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341