[1] KRIM H, VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
[2] YADAR A K, SANTOSH S. Comparison of different wideband DOA estimation methods[C]//2015 IEEE International Conference on Computational Intelligence and Computing Research(ICCIC). Piscataway, NJ: IEEE Press, 2015: 1-4.
[3] 邓佳欣, 廖桂生, 杨志伟, 等. 基于虚拟孔径扩展的子带信息融合宽带DOA估计[J]. 系统工程与电子技术, 2016, 38(2): 245-250. DENG J X, LIAO G S, YANG Z W, et al. Subband information fusion for wideband DOA estimation based on virtual array[J]. System Engineering and Electronics, 2016, 38(2): 245-250 (in Chinese).
[4] 金勇, 黄建国, 张立杰. 宽带信号近似最大似然方位估计快速算法[J]. 航空学报, 2008, 29(5): 1264-1268. JIN Y, HUANG J G, ZHANG L J. DOA estimation fast algorithm for wideband sources[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1264-1268 (in Chinese).
[5] WAX M, SHAN T J, KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 817-827.
[6] WANG H, KAVEH M. Coherent signal-subspace processing for the detection and estimaton of angles of muliple wide-band sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 823-831.
[7] CUI W, QIAN T, TIAN J. Enhanced covariances matrix sparse representation method for DOA estimation[J]. Electronics Letters, 2015, 51(16): 1288-1290.
[8] 沈志博, 赵国庆, 董春曦, 等. 基于压缩感知的频率和DOA联合估计算法[J]. 航空学报, 2014, 35(5): 1357-1364. SHEN Z B, ZHAO G Q, DONG C X, et al. United frequency and DOA estimation algorithm based on compressed sensing[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1357-1364 (in Chinese).
[9] MALIOUTOV D, CETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transaction on Signal Processing, 2005, 53(8): 3010-3022.
[10] TIAN Y, SUN X Y, ZHAO S S. Sparse-reconstruction-based direction of arrival, polarisation and power estimation using a cross-dipole array[J]. IET Radar, Sonar & Navigation, 2015, 9(6): 727-731.
[11] HYDER M M, MAHATA K. A robust algorithm for joint sparse recovery[J]. IEEE Signal Processing Letters, 2009, 16(12): 1091-1094.
[12] LIU Z C, WANG X L, ZHAO G H, et al. Wideband DOA estimation based on sparse representation—An extension of l1-SVD in wideband cases[C]//IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC). Piscataway, NJ: IEEE Press, 2013: 1-4.
[13] 赵永红, 张林让, 刘楠, 等. 一种新的基于稀疏表示的宽带信号DOA估计方法[J]. 电子与信息学报, 2015, 37(12): 2935-2940. ZHAO Y H, ZHANG L R, LIU N, et al. A novel method of DOA estimation for wideband signals based on sparse representation[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2935-2940 (in Chinese).
[14] 刘寅, 吴顺君, 吴明宇, 等. 基于空域稀疏性的宽带DOA估计[J]. 航空学报, 2012, 33(11): 2028-2038. LIU Y, WU S J, WU M Y, et al. Wideband DOA estimation based on spatial sparseness[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2028-2038 (in Chinese).
[15] TIAN Y, SUN X Y, ZHAO S S. DOA and power estimation using a sparse representation of second-order statistics vector and l0-norm approximation[J]. Signal Process, 2014, 105: 98-108.
[16] 田野, 孙晓颖, 秦宇镝. 基于两步加权l1范数约束的高分辨率波达方向和功率估计[J]. 电子与信息学报, 2014, 36(7): 1637-1641. TIAN Y, SUN X Y, QIN Y D. High-resolution direction of-arrival and power estimation using two-stage weighted l1-norm penalty[J]. Journal of Electronics & Information Technology, 2014, 36(7): 1637-1641 (in Chinese).
[17] CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[18] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Redus Matematique, 2008, 346(9-10): 589-592.
[19] DONOHO D L, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representation in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
[20] XU X, WEI X, YE Z. DOA estimation based on sparse signal recovery utilizing weighted l1-norm penalty[J]. IEEE Signal Processing Letters, 2012, 19(3): 155-158.
[21] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of American Statistical Association, 2001, 96(456): 1348-1360.
[22] STURM J. Using SeDuMi 1.02, a MATLAB toolox for optimization over svmmetric cones[J]. Optimization Method and Software, 1999, 11(1-4): 625-653.
[23] GRANT M, BOYD S, YE Y. Cvx: Matlab software for disciplined convex programming[EB/OL]. (2008-06-07)[2016-08-26]. http://cvxr.com/cvx.
[24] 陈建, 田野, 孙晓颖. 基于阵列协方差矩阵向量稀疏表示的高分辨波达方向估计[J]. 吉林大学学报: 工学版, 2014, 44(2): 485-489. CHEN J, TIAN Y, SUN X Y. High resolution direction-of-arrival estimation based on a sparse representation of array covariance matrix column vectors[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(2): 485-489 (in Chinese). |