[1] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Science, 2001, 37(8):669-767.
[2] KIND R J, POTAPCZUK M G, FEO A C, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Science, 1998, 34(5-6):257-345.
[3] OLSEN W, WALKER E. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces:NASA TM-87184[R]. Washington, D.C.:NASA, 1986.
[4] BILANIN A J. Proposed modifications to ice accretion icing scaling theory[J]. Journal of Aircraft, 1991, 28(6):353-359.
[5] IQBAL N, VAN DIJK N H, VERHOEVEN V W J, et al. Experimental study of ordering kinetics in aluminum alloys during solidification[J]. Acta Materialia, 2003, 51(15):4497-4504.
[6] MALKIN T L, MURRAY B J, BRUKHNO A, et al. Structure of ice crystallized from supercooled water:stacking disordered ice[J]. Proceedings of the National Academy of Sciences, 2012, 109(4):1041-1045.
[7] ELLEN N, JACCO M H, EDWIN W, et al. Aircraft icing in flight:effects of impact of supercooled large droplets[C]//29th Congress of the Aeronautical Sciences, 2014.
[8] JEZIORNY A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC[J]. Polymer, 1978, 19(10):1142-1144.
[9] LIU M, ZHAO Q, WANG Y, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer, 2003, 44(8):2537-2545.
[10] ELLIOTT J W, SMITH F T. Ice formation on a smooth or rough cold surface due to the impact of a supercooled water droplet[J]. Journal of Engineering Mathematics, 2015:1-30.
[11] DEBENEDETTI P G. Supercooled and glassy water[J]. Journal of Physics:Condensed Matter, 2003, 15(45):1669-1679.
[12] KOSTINSKI A, CANTRELL W. Entropic aspects of supercooled droplet freezing[J]. Journal of the Atmospheric Sciences, 2008, 65(9):2961-2971.
[13] BLAKE J, THOMPSONY D, STROBLZ T, et al. Effects of surface characteristics and droplet diameter on the freezing of supercooled water droplets impacting a cooled substrate[C]//6th AIAA Atmospheric and Space Environments Conference, 2014:2328.
[14] BLAKE J, THOMPSON D, RAPS D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7):1725-1739.
[15] DE GENNES P G. Wetting:statics and dynamics[J]. Reviews of Modern Physics, 1985, 57(3):827-863.
[16] RIOBOO R, MARENGO M, TROPEA C. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1):112-124.
[17] BURTNETT E. Volume of fluid simulations for droplet impact on dry and wetted hydrophobic and superhydrophobic surfaces[D]. Mississippi:Mississippi State University, 2012.
[18] ALEXIADES V, SOLOMON A D. Mathematical modeling of melting and freezing processes[M]. Washington, D. C.:Hemisphere, 1993.
[19] KNIGHT C A, FLETCHER N H. The freezing of supercooled liquids[J]. American Journal of Physics, 1968, 36(5):466-467.
[20] FUMOTO K, KAWANAMI T. Study on freezing characteristics of supercooled water droplets impacting on solid surfaces[J]. Journal of Adhesion Science and Technology, 2012, 26(4-5):463-472.
[21] KING W D. Freezing rates of water droplets[J]. Journal of the Atmospheric Sciences, 1975, 32(2):403-408.
[22] TABAKOVA S, FEUILLEBOIS F, RADEV S. Freezing of a suspended supercooled droplet with a heat transfer mixed condition on its outer surface[C]//1st International Conference on Applications of Mathematics in Technical and Natural Sciences, 2009, 1186(1):240-247.
[23] MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12):7699-7707.
[24] FEUILLEBOIS F, LASEK A, CREISMEAS P, et al. Freezing of a subcooled liquid droplet[J]. Journal of Colloid and Interface Science, 1995, 169(1):90-102.
[25] CHALMERS B. Principles of solidication[M]. 1977.
[26] JUNG S, DORRESTIJN M, RAPS D, et al. Are superhydrophobic surfaces best for icephobicity?[J]. Langmuir, 2011, 27(6):3059-3066.
[27] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 1985. QIU X G, HAN F H. Aircraft anti-icing system[M]. 1985(in Chinese).
[28] POTAPCZUK M G, BIDWELL C S. Numerical simulation of ice growth on a MS-317 swept wing geometry:NASA TM-103705[R]. Washington, D. C.:NASA, 1991.
[29] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2007. YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese).
[30] SCHETNIKOV A, MATIUNIN V, CHERNOV V. Conical shape of frozen water droplets[J]. American Journal of Physics, 2015, 83(1):36-38.
[31] MARIN A G, ENRIQUEZ O R, BRUNET P, et al. Universality of tip singularity formation in freezing water drops[J]. Physical Review Letters, 2014, 113(5):054301.
[32] JIN Z Y, SUI D Y, YANG Z G. The impact, freezing, and melting processes of a water droplet on an inclined cold surface[J]. International Journal of Heat and Mass Transfer, 2015, 90:439-453.
[33] MORITA K, TANAKA M, KIMURA S, et al. Stationary and dynamic-icing processes of supercooled-water droplet on icephobic coating[C]//5th AIAA Atmospheric and Space Environments Conference, 2013.
[34] LUPI L, HUDAIT A, MOLINERO V. Heterogeneous nucleation of ice on carbon surfaces[J]. Journal of the American Chemical Society, 2014, 136(8):3156-3164.
[35] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[36] 张大林, 杨曦, 昂海松. 过冷水滴撞击结冰表面的数值模拟[J]. 航空动力学报, 2003, 18(1):87-91. ZHANG D L, YANG X, ANG H S. Numerical simulation of supercooled water droplets impingement on icing surfaces[J]. Journal of Aerospace Power, 2003, 18(1):87-91(in Chinese).
[37] MYERS T G. An extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2):211-218.
[38] MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbitrary three dimensional surface[J]. Physics of Fluids, 2002, 14(8):2788-2803.
[39] MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting glaze ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids, 2002, 14(1):240-256.
[40] MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25):5483-5500.
[41] CHARPIN J P F. Water flow on accreting ice surfaces[D]. Cranfield:Cranfield University, 2002.
[42] PATRICK V. An automatic multi-stepping approach for aircraft ice prediction[D]. Cranfield:Cranfield University, 2007.
[43] ROTHMAYER A P. Scaling laws for water and ice layers on airfoils[C]//41th AIAA Aerospace Sciences Meeting, 2003.
[44] ISAAC G A, COBER S G, KOROLEV A V, et al. Canada freezing drizzle experiment[C]//41th AIAA Aerospace Sciences Meeting, 1999.
[45] BRAGG M B. Aircraft aerodynamic effects due to large droplet ice accretions:AIAA-1996-0932[R]. Reston:AIAA, 1996.
[46] COBER S G, ISAAC G A, STRAPP J W. Characterizations of aircraft icing environments that include supercooled large drops[J]. Journal of Applied Meteorology, 2011, 40(4):1984-2002.
[47] RICHARD J K. Assessment of importance of water-film parameters for scaling of glaze icing:AIAA-2001-0835[R]. Reston:AIAA, 2001.
[48] KERHO M F, BRAGG M B. Airfoil boundary-layer development and transition with large leading-edge roughness[J]. AIAA Journal, 1997, 35(1):24-31.
[49] WRIGHT W B, POTAPCZUK M G. Semi-empirical modeling of SLD physics[C]//42nd Aerospace Sciences Meeting and Exhibit, 2004.
[50] HONSEK R, HABASHI W G. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4):1290-1296.
[51] KIND M, GILL W N, ANANTH R. The growth of ice dendrites under mixed convection conditions[J]. Chemical Engineering Communications, 1987, 55:295-312.
[52] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-I. Laminar heat transfer[J]. International Journal of Thermal Sciences, 2003, 42(5):481-498.
[53] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-II. Transition and turbulent heat transfer[J]. International Journal of Thermal Sciences, 2003, 42(5):499-511.
[54] SHIBKOV A A, GOLOVIN Y I, ZHELTOV M A, et al. Morphology diagram of non-equilibrium patterns of ice crystals growing in supercooled water[J]. Physica A:Statistical Mechanics and its Applications, 2003, 319:65-79.
[55] TANAKA M, KATUAKI M, KIMURA S, et al. Time-resolved temperature distribution of icing process of supercooled water in microscopic scale[C]//6th AIAA Atmospheric and Space Environments Conference, 2014.
[56] TANAKA M, KATUAKI M, YAMAMOTO M, et al. Freezing behavior of a supercooled water droplet impacting on surface using Dual-Luminescent imaging technique[C]//APS Meeting Abstracts, 2015.
[57] BRASLAVSKY I, LIPSON S G. Interferometric measurement of the temperature field in the vicinity of ice crystals growing from supercooled water[J]. Journal of Physics A:Statistical Mechanics and its Applications, 1998, 249(1):190-195.
[58] SANZ E, VEGA C, ESPINOSA J R, et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the American Chemical Society, 2013, 135(40):15008-15017.
[59] MATSUMOTO M, SAITO S, OHMINE I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J]. Nature, 2002, 416(6879):409-413.
[60] NISTOR R A, MARKLAND T E, BERNE B J. Interface-limited growth of heterogeneously nucleated Ice in supercooled water[J]. The Journal of Physical Chemistry B, 2014, 118(3):752-760.
[61] HAMMOND D, QUERO M, IVEY P, et al. Analysis and experimental aspects of the impact of supercooled water droplets into thin water films[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
[62] WHALEN E A, BROEREN A P, BRAGG M B. Aerodynamics of scaled runback ice accretions[J]. Journal of Aircraft, 2008, 45(3):591-603.
[63] IULIANO E, MINGIONE G, PETROSINO F. Eulerian modeling of large droplet physics toward realistic aircraft icing simulation[J]. Journal of Aircraft, 2011, 48(5):1621-1632.
[64] LI H, ROISMAN I V, TROPEA C. Experiments and modelling of splash[R]. 2012.
[65] WORSTER M G. Solidification of fluids[J]. Perspectives in Fluid Dynamics, 2000, 742:393-446.
[66] LANGER J S, MULLER-KRUMBHAAR H. Theory of dendritic growth[J]. Acta Metallurgica, 1978, 26(11):1681-1687.
[67] 侯硕, 曹义华. 基于润滑理论的二维积冰数值模拟[J]. 北京航空航天大学学报, 2014, 40(10):1442-1450. HOU S, CAO Y H. Numerical simulation of two dim ensional ice accretion based on lubrication theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10):1442-1450(in Chinese).
[68] DU Y X, STEPHAN E B, GUI Y W, et al. Heat and mass transfer study of supercooled large droplet icing[C]//2015 International Conference on Fluid Mechanics, Heat Transfer and Thermodynamics, 2015.
[69] PARASCHIVOIU I, SAEED F. Aircraft icing[M]. New York:John Wiley & Sons, INC, 2004.
[70] VARGAS M, RESHOTKO E. LWC and temperature effects on ice accretion formation on swept wings at glaze ice conditions[C]//38th Aerospace Sciences Meeting, 2000.
[71] 杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5):997-1002. DU Y X, GUI Y W, KE P, et al. Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of Aerospace Power, 2011, 26(5):997-1002(in Chinese).
[72] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰形测量方法[J]. 航空学报, 2017, 38(1):120167. LI W B, YI X, DU Y X, et al. A measurement approach for ice shape based on variational segmentation model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120167(in Chinese).
[73] SZILDER K, LOZOWSKI E P. Three-dimensional modelling of ice accretion density[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(568):2395-2404.
[74] LIBBRECHT K G. The physics of snow crystals[J]. Reports on Progress in Physics, 2005, 68(4):855-895.
[75] MOORE E B, DE LA LLAVE E, WELKE K, et al. Freezing, melting and structure of ice in a hydrophilic nanopore[J]. Physical Chemistry Chemical Physics, 2010, 12(16):4124-4134.
[76] 杜雁霞. 飞机结冰的相变机理及传热特性研究[D]. 绵阳:中国空气动力研究与发展中心, 2009. DU Y X. Phase change and heat transfer mechanisms of aircraft icing[D]. Mianyang:China Aerodynamics Research and Development Center, 2009(in Chinese).
[77] 周志宏, 易贤, 桂业伟, 等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学, 2016, 30(20):20-25. ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(20):20-25(in Chinese).
[78] KONG W L, LIU H. Development and theoretical analysis of an aircraft supercooled icing model[J]. Journal of Aircraft, 2014, 51(3):975-986.
[79] 吴佩佩, 朱春玲, 刘文平, 等. 过冷大水滴条件下机翼结冰数值仿真[J]. 计算机仿真, 2014, 31(9):51-55. WU P P, ZHU C L, LIU W P, et al. Numerical simulation of aircraft icing under supercooled large droplet conditions[J]. Computer Simulation, 2014, 31(9):51-55(in Chinese).
[80] 王超, 常士楠, 吴孟龙, 等. 过冷大水滴飞溅特性数值分析[J]. 航空学报, 2014, 35(4):1004-1011. WANG C, CHANG S N, WU M L, et al. Numerical investigation of splashing characteristics in super-cooled large droplet regime[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):1004-1011(in Chinese).
[81] 杨胜华, 林贵平. 机翼结冰过程的数值模拟[J]. 航空动力学报, 2011, 26(2):323-330. YANG S H, LIN G P. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2011, 26(2):323-330(in Chinese).
[82] 王桥. 过冷大水滴动力学特性的温度影响实验研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. WANG Q. Experimental study on the temperature effect of the dynamic characteristics of the supercooled large droplet[D]. Mianyang:China Aerodynamics Research and Development Center, 2015(in Chinese).
[83] 杜雁霞, 桂业伟, 肖春华, 等. 溢流条件下飞机结冰过程的传热特性研究[J]. 航空动力学报, 2009, 24(9):1966-1971. DU Y X, GUI Y W, XIAO C H, et al. Investigation of heat transfer characteristics of aircraft icing under runback water[J]. Journal of Aerospace Power, 2009, 24(9):1966-1971(in Chinese).
[84] BAI J Q, LI X, HUA J, et al. Ice accretion simulation in supercooled large droplets regime[J]. Acta Aerodynamica Sinica, 2013, 31(6):801-811.
[85] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3):865-872. QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica, 2016, 37(3):865-872(in Chinese).
[86] BELCASTRO C M, FOSTER J V. Aircraft loss-of-control accident analysis[C]//Proceedings of AIAA Guidance, Navigation and Control Conference, 2010.
[87] ADDY JR H E, VERES J P. An overview of NASA engine ice-crystal icing research:NASA TM-217254[R]. Washington, D. C.:NASA, 2011.
[88] MASON J G, STRAPP J W, CHOW P. The ice particle threat to engines in flight[C]//44th AIAA Aerospace Sciences Meeting, 2006.
[89] LEROY D, FONTAINE E, SCHWARZENBOECK A, et al. HAIC/HIWC field campaign-investigating ice microphysics in high ice water content regions of mesoscale convective systems[C]//EGU General Assembly Conference Abstracts, 2015.
[90] STRUK P M, BROEREN A P, TSAO J C, et al. Fundamental ice crystal accretion physics studies:NASA TM-217429[R]. Washington, D. C.:NASA, 2012.
[91] KNEZEVICI D C, FULEKI D, CURRIE T, et al. Particle size effects on ice crystal accretion[C]//4th AIAA Atmospheric and Space Environments Conference, 2012.
[92] JORGENSON P C E, VERES J P, COENNEN R. Modeling of commercial turbofan engine with ice crystal ingestion:follow-on[C]//6th Atmospheric and Space Environments Conference, 2014.
[93] WRIGHT W B, JORGENSON P C E, VERES J P. Mixed phase modeling in GlennICE with application to engine icing[C]//AIAA Atmospheric and Space Environments Conference, 2010.ct-ing a cooled substrate[C]//6th AIAA Atmospheric and Space Environments Conference, 2014: 2328.
[15] BLAKE J, THOMPSON D, RAPS D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7): 1725-1739.
[16] DE Gennes P G. Wetting: statics and dynamics[J]. Reviews of modern physics, 1985, 57(3): 827.
[17] RIOBOO R, MARENGO M, TROPEA C. Time evolution of liquid drop impact onto solid, dry sur-faces[J]. Experiments in Fluids, 2002, 33(1): 112-124.
[18] BURTNETT E. Volume of fluid simulations for droplet impact on dry and wetted hydrophobic and superhydrophobic surfaces[D]. Mississippi: Missis-sippi State University, 2012.
[19] ALEXIADES V, SOLOMON A D. Mathematical modeling of melting and freezing processes[M]. Washington: Hemisphere, 1993.
[20] KNIGHT C A, FLETCHER N H. The freezing of supercooled liquids[J]. American Journal of Phys-ics, 1968, 36(5): 466-467.
[21] FUMOTO K, KAWANAMI T. Study on freezing characteristics of supercooled water droplets impact-ing on solid surfaces[J]. Journal of Adhesion Science and Technology, 2012, 26(4-5): 463-472.
[22] KING W D. Freezing rates of water droplets[J]. Journal of the Atmospheric Sciences, 1975, 32(2): 403-408.
[23] TABAKOVA S, FEUILLEBOIS F, RADEV S. Freezing of a suspended supercooled droplet with a heat transfer mixed condition on its outer sur-face[C]//1st International Conference on Applications of Mathematics in Technical and Natural Sciences, AIP Publishing, 2009, 1186(1): 240-247.
[24] MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707.
[25] FEUILLEBOIS F, LASEK A, CREISMEAS P, et al. Freezing of a subcooled liquid droplet[J]. Journal of Colloid and Interface Science, 1995, 169(1): 90-102.
[26] CHALMERS B. Principles of solidication[M]. Krieger Pub Co, 1977.
[27] JUNG S, DORRESTIJN M, RAPS D, et al. Are superhydrophobic surfaces best for icephobicity?[J]. Langmuir, 2011, 27(6): 3059-3066.
[28] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 航空专业教材编审室, 1985.
QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing, 1985. (in Chinese)
[29] POTAPCZUK M G, BIDWELL, C S. Numerical simulation of ice growth on a MS-317 swept wing ge-ometry[J]. NASA TM-103705, 1991.
[30] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.
YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007. (in Chinese)
[31] BRASLAVSKY I, LIPSON S G. Interferometric measurement of the temperature field in the vicinity of ice crystals growing from supercooled water[J]. Journal of Physics A: Statistical Mechanics and its Applications, 1998, 249(1): 190-195.
[32] MARIN A G, ENRIQUEZ O R, Brunet P, et al. Universality of Tip Singularity Formation in Freezing Water Drops[J]. Physical Review Letters, 2014, 113, 054301.
[33] JIN Z Y, SUI D Y, YANG Z G. The impact, freezing, and melting processes of a water droplet on an inclined cold surface[J]. International Journal of Heat and Mass Transfer, 2015, 90: 439-453.
[34] LI X H, Zhang X X, Chen M. Estimation of viscous dissipation in nanodroplet impact and spread-ing[J]. Physics of Fluids, 2015, 27(05): 052007.
[35] LUPI L, HUDAIT A, MOLINERO V. Heteroge-neous nucleation of ice on carbon surfaces[J]. Jour-nal of the American Chemical Society, 2014, 136(8): 3156-3164.
[36] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
[37] 张大林, 杨曦, 昂海松. 过冷水滴撞击结冰表面的数值模拟[J]. 航空动力学报. 2003, 18(1): 87-91.
ZHANG D L, YANG X, ANG H S. Numerical simula-tion of supercooled water droplets impingement on icing surfaces[J]. Journal of Aerospace Power, 2003, 18(1): 87-91. (in Chinese)
[38] MYERS T G. An extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2): 211-218.
[39] MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbi-trary three dimensional surface[J], Physics of Fluids, 2002, 14 (8): 2788-2803.
[40] MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting glaze ice due to supercooled water impacting on a cold surface[J], Physics of Fluids, 2002, 14 (1): 240–256.
[41] MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47 (25): 5483-5500.
[42] CHARPIN J P F. Water flow on accreting ice surfac-es[D]. UK: Cranfield University, 2002.
[43] PATRICK V. An automatic multi-stepping ap-proach for aircraft ice prediction[D]. UK: Cranfield University, 2007.
[44] ROTHMAYER A P. Scaling laws for water and ice layers on airfoils[C]//41th AIAA Aerospace Sci-ences Meeting, 2003.
[45] ISAAC G A, COBER S G, KOROLEV A V, et al. Canada freezing drizzle experiment[C]//41th AIAA Aerospace Sciences Meeting, 1999.
[46] BRAGG M B. Aircraft aerodynamic effects due to large droplet ice accretions [J]. AIAA paper, 1996, 932.
[47] COBER S G, ISAAC G A, STRAPP J W. Charac-terizations of aircraft icing environments that include supercooled large drops[J]. Journal of Applied Mete-orology, 2011, 40(4): 1984-2002.
[48] RICHARD J K. Assessment of importance of water-film parameters for scaling of glaze icing [J]. AIAA Paper 2001, 835.
[49] KERHO M F, BRAGG M B. Airfoil boundary-layer development and transition with large leading-edge roughness[J]. AIAA Journal , 1997, 35(1): 24-31.
[50] WRIGHT W B, POTAPCZUK M G. Semi-empirical modeling of SLD physics[C]//42nd Aero-space Sciences Meeting and Exhibit, Reno, NV, Unit-ed States, 2004.
[51] HONSEK R, HABASHI W G. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4): 1290-1296.
[52] KIND M, GILL W N, ANANTH R. The growth of ice dendrites under mixed convection conditions[J]. Chemical Engineering Communications, 1987, 55: 295-312.
[53] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-I. Laminar heat trans-fer[J]. International Journal of Thermal Sciences, 2003, 42: 481-498.
[54] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-II. Transition and tur-bulent heat transfer[J]. International Journal of Ther-mal Sciences, 2003, 42: 499-511.
[55] SHIBKOV A A, GOLOVIN Y I, ZHELTOV M A, et al. Morphology diagram of non-equilibrium pat-terns of ice crystals growing in supercooled water[J]. Physica A: Statistical Mechanics and its Applica-tions, 2003, 319: 65-79.
[56] TANAKA M, KATUAKI M, KIMURA S, et al. Time-resolved temperature distribution of icing pro-cess of supercooled water in microscopic scale[C]//6th AIAA Atmospheric and Space Environ-ments Conference, 2014: 2329.
[57] TANAKA M, KATUAKI M, YAMAMOTO M, et al. Freezing behavior of a supercooled water droplet Impacting on Surface Using Dual-Luminescent imag-ing technique[J]. Bulletin of the American Physical Society, 2015, 60.
[58] MORITA K, TANAKA M, Kimura S, et al. Sta-tionary and dynamic-icing processes of supercooled-water droplet on icephobic coating [C]//5th AIAA Atmospheric and Space Environments Conference, 2013: 2549.
[59] SANZ E, VEGA C, ESPINOSA J R, et al. Ho-mogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the Ameri-can Chemical Society, 2013, 135(40): 15008-15017.
[60] MATSUMOTO M, SAITO S, OHMINE I. Mo-lecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J]. Nature, 2002, 416(6879): 409-413.
[61] NISTOR R A, MARKLAND T E, BERNE B. J. Inter-face-Limited Growth of Heterogeneously Nucleated Ice in Supercooled Water. J. Phys. Chem. B, 2014, 118 (3):752-760.
[62] HAMMOND D, QUERO M, IVEY P, et al. Analysis and Experimental Aspects of the Impact of Supercooled Water Droplets into Thin Water Films[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005: 077.
[63] WHALEN E A, BROEREN A P, BRAGG M B. Aerodynamics of scaled runback ice accretions[J]. Journal of Aricraft, 2008, 45(3): 591-603.
[64] BAUTISTA C. WP3-airbus 3D icing computa-tions[R]. EXTICE Final Workshop, 2012.
[65] IULIANO E, MINGIONE G, PETROSINO F. Eulerian modeling of large droplet physics toward re-alistic aircraft icing simulation[J]. Journal of Aircraft, 2011, 48(5): 1621-1632.
[66] LI H, ROISMAN I V, TROPEA C. Experiments and modelling of splash[R]. WP2 Final Technical Re-port, EXTICE, 2012.
[67] WORSTER M G. Solidification of fluids[M]. Perspectives in Fluid Dynamics, Cambridge Universi-ty Press, 2000.
[68] LANGER J S, MULLER-KRUMBHAAR H. Theory of dendritic growth[J]. Acta Metallurgica, 1978, 26(11): 1681-1687.
[69] 侯硕, 曹义华. 基于润滑理论的二维积冰数值模拟[J]. 北京航空航天大学学报, 2014, 40(10): 1442-1450.
HOU S, CAO Y H. Numerical simulation of two dim ensional ice accretion based on lubrication theory[J]. Journal of Beijing University of Aeronautics and As-tronautics, 2014, 40(10): 1442-1450. (in Chinese)
[70] DU Y X, STEPHAN E B, GUI Y W, et al. Heat and mass transfer study of supercooled large droplet icing[C]//2015 International Conference on Fluid Me-chanics, Heat Transfer and Thermodynamics, Toronto, Canada, 2015.
[71] PARASCHIVOIU I, SAEED F. Aircraft Icing[M]. John Wiley & Sons, INC, 2004.
[72] VARGAS M, RESHOTKO E. LWC and tem-perature effects on ice accretion formation on swept wings at glaze ice conditions[C]//38th Aerospace Sci-ences Meeting, Reno, NV, United States, 2000.
[73] 杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5): 997-1002.
DU Y X, GUI Y W, KE P, et al. Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of aerospace Power, 2011, 26(5): 997-1002. (in Chinese)
[74] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰形测量方法[J/OL], 航空学报, 2016, 37(x): xxx-xxx. [2016-0620]. http://hkxb.buaa.edu.cn/CN/volumn/home. shtml DOI: 10.7527/S1000-6893.2016.0129.
LI W B, YI X, DU Y X, et al. A measurement ap-proach for ice shape based on variational segmenta-tion model [J/OL]. Acta Aeronautica et Astronautica Sinica, 2016, 37(x): xxx-xxx. [2016-0620]. http://hkxb.buaa.edu.cn/ CN/volumn/home.shtml. DOI: 10.7527/S1000-6893.20 16.0129. (in Chinese)
[75] SZILDER K, LOZOWSKI E P. Three-dimensional modelling of ice accretion density[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(568): 2395-2404.
[76] LIBBRECHT K G. The physics of snow crys-tals[J]. Reports on progress in physics, 2005, 68(4): 855.
[77] MOORE E B, DE LA LLAVE E, WELKE K, et al. Freezing, melting and structure of ice in a hydro-philic nanopore[J]. Physical Chemistry Chemical Physics, 2010, 12(16): 4124-4134.
[78] 杜雁霞. 飞机结冰的相变机理及传热特性研究, 博士后研究报告, 中国空气动力研究与发展中心, 2009.
DU Y X. Phase Change and Heat Transfer Mecha-nisms of Aircraft Icing, China Aerodynamics Re-search and Development Center, 2009.(in Chinese)
[79] 周志宏, 易贤, 桂业伟等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学, 2016, 30(20): 20-25.
ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(20): 20-25. (in Chinese)
[80] KONG W L,LIU H. Development and theoret-ical analysis of an aircraft supercooled icing model[J]. Journal of Aircraft, 2014, 51(3): 975-986.
[81] 吴佩佩, 朱春玲, 刘文平, 等. 过冷大水滴条件下机翼结冰数值仿真[J], 计算机仿真, 2014, 31(9): 51-55.
WU P P, ZHU C L, LIU W P, et al. Numerical simula-tion of aircraft icing under supercooled large droplet conditions[J]. Computer Simulation, 2014, 31(9): 51-55. (in Chinese)
[82] 王超, 常士楠, 吴孟龙, 等. 过冷大水滴飞溅特性数值分析[J], 航空学报, 2014, 35(4): 1004-1011.
WANG C, CHANG S N, WU M L, et al. Numerical investigation of splashing characteristics in super-cooled large droplet regime[J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(4): 1004-1011. (in Chi-nese)
[83] 杨胜华, 林贵平. 机翼结冰过程的数值模拟[J]. 航空动力学报, 2011, 26(2): 323-330.
YANG S H, LIN G P. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2011, 26(2): 323-330. (in Chinese)
[84] 王桥. 过冷大水滴动力学特性的温度影响实验研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.
WANG Q. Experimental study on the temperature effect of the dynamic characteristics of the super-cooled large droplet[D]. Mianyang: China Aerody-namics Research and Development Center, 2015.(in Chinese)
[85] 杜雁霞, 桂业伟, 肖春华, 易贤. 溢流条件下飞机结冰过程的传热特性研究[J]. 航空动力学报, 2009, 24(9): 1966-1971.
DU Y X, GUI Y W, XIAO C H, et al. Investigation of heat transfer characteristics of aircraft icing under runback water[J]. Journal of Aerospace Power, 2009, 24(9): 1966-1971. (in Chinese)
[86] BAI J Q, LI X, HUA J, et al. Ice accretion simu-lation in supercooled large droplets regime[J]. Acta Aerodynamica Sinica, 2013, 31(06): 801-811.
[87] High Level Ice Crystal Icing: Effects on Engines. http://www.skybrary.aero/index.php/High_Level_Ice_Crystal_Icing:_Effects_on_Engines.
[88] BELCASTRO C M, FOSTER J V. Aircraft loss-of-control accident analysis[C]//Proceedings of AIAA Guidance, Navigation and Control Conference, To-ronto, Canada, Paper No. AIAA-2010-8004. 2010.
[89] ADDY JR H E, VERES J P. An overview of NASA engine ice-crystal icing research[R]. NASA/TM, 2011-217254.
[90] MASON J G, STRAPP J W, CHOW P. The ice particle threat to engines in flight[C]//44th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2006: 9-12.
[91] ALFONS S, FABIEN D, ALICE G, et al. High IWC-Ice Water Content of clouds at High altitude[R]. Research Project EASA. 2011. C30, 2012.
[92] LEROY D, FONTAINE E, SCHWARZENBOECK A, et al. HAIC/HIWC field campaign-investigating ice microphysics in high ice water content regions of mesoscale convective sys-tems[C]//EGU General Assembly Conference Ab-stracts, 2015, 17: 9551.
[93] STRUK P M, BROEREN A P, TSAO J C, et al. Fundamental ice crystal accretion physics studies[R]. NASA/TM-2012-217429.
[94] KNEZEVICI D C, FULEKI D, CURRIE T, et al. Parti-cle size effects on ice crystal accretion[C]//4th AIAA Atmospheric and Space Environments Conference, 2012, 10: 6.2012-3039.
[95] JORGENSON P C E, VERES J P, COENNEN R. Modeling of commercial turbofan engine with ice crystal ingestion: follow-on[C]//6th Atmospheric and Space Environments Conference, Atlanta, Georgia, 2014.
[96] WRIGHT W B, JORGENSON P C E, VERES J P. Mixed phase modeling in GlennICE with application to engine icing[C]//AIAA Atmospheric and Space En-vironments Conference, 2010: 7674. |