[1] NICKEL U. Monopulse estimation with adaptive arrays[J]. IEE Proceedings F-Radar and Signal Proceeding, 1993, 140(5):303-308.
[2] NICKEL U. Overview of generalized monopulse estimation[J]. IEEE Aerospace and Electronics Systems Magazine, 2006, 21(6):27-56.
[3] NICKEL U. Monopulse estimation with subarray-adaptive arrays and arbitrary sum and difference beams[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(4):232-238.
[4] MONAKOV A. Maximum-likelihood estimation of parameters of an extended target in tracking monopulse radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3):2653-2665.
[5] CHAUMETTE E, NICKEL U, LARZABAL P. Detection and parameter estimation of extended targets using generalized monopulse estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3389-3417.
[6] WU R. Space-time adaptive monopulse processing for airborne radar in non-homogeneous environments[J]. International Journal of Electronics and Communications, 2011, 65(3):258-264.
[7] CHEN G, XIE W C. Space-time adaptive monopulse based on space-time uniform constraint[C]//IEEE International Conference on Signal Processing, Communication and Computing. Piscataway, NJ:IEEE Press, 2014:215-218.
[8] WU R. Parameter estimation of moving target based on linearly constrained space-time adaptive monopulse technique[C]//IEEE International Symposium on Phased Array Systems and Technology. Piscataway, NJ:IEEE Press, 2010:107-112.
[9] KLEMM R, NICKEL U. Adaptive monopulse with STAP[C]//IET International Radar Conference, 2006:1-4.
[10] WARD J. Maximum likelihood angle and velocity estimation with space-time adaptive processing radar[C]//Conference Record of the Thirtieth Asilomar Conference on Signals Systems and Computers, 1996, 2:1265-1267.
[11] ZHOU B L, DAI L Y. Constrained adaptive sum-difference monopulse algorithm with sidelobe controlled[C]//5th IET International Conference on Wireless, Mobile and Multimedia Netwotks, 2013:29-32.
[12] WU D, KONG Y Y. Statistical analysis of monopuls SAR for CFAR detection of ground moving targets[C]//IEEE International Conference Geoscience and Remote Sensing Symposium, 2014:604-607.
[13] WILLIAM L, MELVIN. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1):19-35.
[14] KLEMM R. Principles of space-time adaptive processing[M]. London:The institution of Electrical Engineers, 2002:117-125.
[15] DEGURSE J. Reduced-rank STAP for target detection in heterogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1153-1162.
[16] WANG X R, ABOUTANIOS E. Reduced-rank STAP for slow-moving target detection by antenna-pulse selection[J]. IEEE Signal Processing Letters, 2015, 22(8):1156-1160.
[17] YANG X R, LIU Y X. Reduced-rank sub-CPI STAP with fast convergence measure of effectiveness in nonhomogenous clutter[C]//IET International Radar Conference, 2013:1-5.
[18] QIN W X. Reduced-rank space-time adaptive processing to radar measure data[C]//201210th World Congress on Intelligent Control and Automation, 2012:4332-4336.
[19] LI X M, FENG D Z. Dinension-reduced space-time adaptive clutter suppression algorithm on lower-rank approximation to weight matrix in airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):53-69.
[20] ZHANG W, HE Z S. A method for finding best channels in beam-space-doppler-reduced-dimension STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):254-264.
[21] DIPIETRO R. Extended factored space-time processing for airborne radar systems[C]//1992 Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems and Computing, 1992:425-430. |