[1] Jia L J, Yang N H, Li Z Y. Digital manufacturing technology for composites[C]//The 14th Annual Meeting of China Association for Science and Technology 11 at the Venue: BBS on Development of Low Cost, High Performance Composite Materials, 2012: 1-5 (in Chinese). 贾丽杰, 杨霓虹, 李志远. 复合材料构件数字化制造技术初探[C]//第十四届中国科协年会第11分会场: 低成本, 高性能复合材料发展论坛论文集, 2012: 1-5.
[2] Zhang P Y. The study of digital technology application for composites[J]. China High-Tech Enterprises, 2013(2): 10-13 (in Chinese). 张鹏宇. 复合材料数字化技术应用研究[J]. 中国高新技术企业, 2013(2): 10-13.
[3] Chen L P, Dai D, Cao Z H. The key technology of digital manufacture for the compound material component[J]. Manufacture Information Engineering of China, 2009, 38(5): 43-48 (in Chinese). 陈利平, 戴棣, 曹正华. 复合材料构件数字化制造的关键技术[J]. 中国制造业信息化, 2009, 38(5): 43-48.
[4] Chryssolouris G, Papakostas N, Mavrikios D. A perspective on manufacturing strategy: Produce more with less[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(1): 45-52.
[5] Ye L, Lu Y, Su Z, et al. Functionalized composite structures for new generation airframes: a review[J]. Composites Science and Technology, 2005, 65(9): 1436-1446.
[6] Yuan Z Y, Wang Y J, Wei S M, et al. Digital design and manufacturing technology for aircraft composites component mold[J]. Aeronautical Manufacturing Technology, 2013(10): 43-47 (in Chinese). 元振毅, 王永军, 魏生民, 等. 飞机复合材料构件模具数字化设计与制造技术[J]. 航空制造技术, 2013(10): 43-47.
[7] Liang L Z, Li Y Z. Molding technology of large scale composites panel[J]. Aeronautical Manufacturing Technology, 2012(23/24): 62-66 (in Chinese). 梁禄忠, 李延征. 大型复合材料壁板成型技术[J]. 航空制造技术, 2012(23/24): 62-66.
[8] Lv X, Pu Y W. Digital manufacturing of composites part based on application of advanced manufacturing equipment[J]. Aeronautical Manufacturing Technology, 2014(22): 102-105 (in Chinese). 吕雪, 蒲永伟. 复材制件数字化制造及先进设备的应用[J]. 航空制造技术, 2014(22): 102-105.
[9] Yin J L, Shen J F, Zhang Z D. Path planning for composite fiber placement[J]. Fiber Reinforced Plastics/Composites, 2014(3): 8-12 (in Chinese). 尹纪龙, 沈景凤, 章志东. 复合材料自动铺丝轨迹规划[J]. 玻璃钢/复合材料, 2014(3): 8-12.
[10] Mokadi E, Mitsova D, Wang X. Projecting the impacts of a proposed streetcar system on the urban core land redevelopment: The case of Cincinnati, Ohio[J]. Cities, 2013, 35: 136-146.
[11] Guillermin O. Wind blade manufacturers face balancing act[J]. Reinforced Plastics, 2011, 55(1): 22-26.
[12] Duan Y G, Dong X W, Ge Y M, et al. Robotic fiber placement trajectory planning based on CATIA CNC machining path[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2632-2640 (in Chinese). 段玉岗, 董肖伟, 葛衍明, 等. 基于CATIA生成数控加工路径的机器人纤维铺放轨迹规划[J]. 航空学报, 2014, 35(9): 2632-2640.
[13] Xiong W L, Xiao J, Wang X F, et al.Algorithm of adaptive path planning for automated placement on meshed surface[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 434-441 (in Chinese). 熊文磊, 肖军, 王显峰, 等. 基于网格化曲面的自适应自动铺放轨迹算法[J]. 航空学报, 2013, 34(2): 434-441.
[14] Huan D J, Xiao J, Li Y. CAD/CAM software technology for composites automated placement[J]. Aeronautical Manufacturing Technology, 2010 (17): 40-45 (in Chinese). 还大军, 肖军, 李勇. 复合材料自动化制造技术——复合材料自动铺放 CAD/CAM软件技术[J]. 航空制造技术, 2010(17): 40-45.
[15] Li Y H, Fu H Y, Han Z Y, et al. Varible-angle trajectory planning algorithm for automated fiber placement of two non-developable surface[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(10): 1523-1529 (in Chinese). 李玥华, 富宏亚, 韩振宇, 等. 两类非可展曲面零件自动纤维铺放变角度轨迹规划算法[J]. 计算机辅助设计与图形学学报, 2013, 25(10): 1523-1529.
[16] Yao S, Li M, Gu Y Z. Hot diaphragm forming of carbon fiber composite with C-shaped structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 95-99 (in Chinese). 姚双, 李敏, 顾铁卓. 碳纤维复合材料C形结构热隔膜成型工艺[J]. 北京航空航天大学学报, 2013, 39(1): 95-99.
[17] Bian X X, Gu Y Z, Sun J, et al. Effects of temperature and molding rate in hot diaphragm forming process on the forming quality of C-shaped composite[J]. Fiber Reinforced Plastics/Composites, 2013(5): 45-50 (in Chinese). 边旭霞, 顾轶卓, 孙晶, 等. 热隔膜工艺温度与成型速率对C形复合材料成型质量的影响[J]. 玻璃钢/复合材料, 2013(5): 45-50.
[18] Wang S K, Ma X Q, Li M, et al. Four key technologies of structural composites for aircraft applications and its development[J]. Fiber Reinforced Plastics/Composites, 2014 (9): 76-84 (in Chinese). 王绍凯, 马绪强, 李敏, 等. 飞行器结构用复合材料四大核心技术及发展[J]. 玻璃钢/复合材料, 2014(9): 76-84.
[19] Pantelakis S G, Baxevani E A. Optimization of the diaphragm forming process with regard to product quality and cost[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(4): 459-470.
[20] Labeas G N, Watiti V B, Katsiropoulos C V. Thermomechanical simulation of infrared heating diaphragm forming process for thermoplastic parts[J]. Journal of Thermoplastic Composite Materials, 2008, 21(4): 353-370.
[21] Smiley A J, Pipes R B. Analysis of the diaphragm forming of continuous fiber reinforced thermoplastics[J]. Journal of Thermoplastic Composite Materials, 1988, 1: 298-321.
[22] Krebs J, Friedrich K, Bhattacharyya D. A direct comparison of matched-die versus diaphragm forming[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29: 183-188
[23] Mallon P J, O'Bradaigh C M. Development of a pilot autoclave for polymeric diaphragm forming of continuous fiber reinforced thermoplastics[J]. Composites, 1988, 19(1): 37-47.
[24] Li Q F, Wang Y F, Wu C S. Integral design of composite central wing on large passenger aircraft[J]. Fiber Composites, 2013, 30(1): 3-7 (in Chinese). 李庆飞, 王一飞, 吴承思. 大型客机复合材料中央翼整体化设计研究[J]. 纤维复合材料, 2013, 30(1): 3-7.
[25] Wang Y G, Liang X Z. Integral structure and integral manufacture of composite materials[C]//Composite Materials: Innovation and Sustainable Development (I), 2010: 616-623 (in Chinese). 王永贵, 梁宪珠. 复合材料整体结构与整体成形技术[C]//复合材料: 创新与可持续发展 (上册), 2010: 616-623.
[26] Ma X, Yang Z, Gu Y, et al.Manufacture and characterization of carbon fiber composite stiffened skin by resin film infusion/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(17): 1559-1573.
[27] Huang C K. Study on co-cured composite panels with blade-shaped stiffeners[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(5): 403-410.
[28] Kane D M, Sheu C H, Shimazu D M. Co-cured vacuum-assisted resin transfer molding manufacturing method: USA, 7419627[P]. 2008-09-12.
[29] Ma X Q, Gu Y Z, Li M, et al. Properties of carbon fiber composite laminates fabricated by coresin film infusion process for different prepreg materials[J]. Polymer Composites, 2013, 34(12): 2008-2018.
[30] Ma X Q, Gu Y Z, Li M, et al.Investigation of carbon fiber composite stiffened skin with vacuum assisted resin infusion/prepreg co-curing process[J]. Science China Technological Sciences, 2014, 57(10): 1956-1966.
[31] Ma X, Gu Y, Li Y, et al.Interlaminar properties of carbon fiber composite laminates with resin transfer molding/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(24): 2228-2241.
[32] Ma X, Li Y, Gu Y, et al. Numerical simulation of prepreg resin impregnation effect in vacuum-assisted resin infusion/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(24): 2265-2273.
[33] Xu W, Gu Y, Li M, et al. Co-curing process combining resin film infusion with prepreg and co-cured interlaminar properties of carbon fiber composites[J]. Journal of Composite Materials, 2014, 48(14): 1709-1724.
[34] Ma X Q, Gu Y Z, Li M, et al. Investigation of co-LCM process and the co-cured laminar interface of carbon fiber composites[C]//The 11th Conference of Flow Processes in Composite Materials, 2012: 576-585.
[35] Ma X Q, Gu Y Z, Li M, et al. Investigation of the properties of carbon fiber/epoxy composite laminates fabricated with co-RFI process[C]//The 19th International Conference on Composite Materials, 2013: 4493-4501.
[36] Tang J M. Progress in the out of autoclave process in aerospace composites[J]. Spacecraft Environment Engineering, 2014, 31(6): 577-583 (in Chinese). 唐见茂. 航空航天复合材料非热压罐成型研究进展[J]. 航天器环境工程, 2014, 31 (6): 577-583.
[37] Lian W. The application of low cost the autoclave process in aircraft composite structure[C]//Commercial Aircraft Composite Application of International Conference on BBS in 2011, 2011: 1-8 (in Chinese). 廉伟. 低成本非热压罐工艺在飞机复材结构上的应用[C]//2011年商用飞机复合材料应用国际论坛会议论文集, 2011: 1-8.
[38] Kim D, Centea T, Nutt S R. Out-time effects on cure kinetics and viscosity for an out-of-autoclave (OOA) prepreg: Modelling and monitoring[J]. Composites Science and Technology, 2014, 100: 63-69.
[39] Kim D, Centea T, Nutt S R. In-situ cure monitoring of an out-of-autoclave prepreg: Effects of out-time on viscosity, gelation and vitrification[J]. Composites Science and Technology, 2014, 102: 132-138.
[40] Centea T, Grunenfelder L K, Nutt S R. A review of out-of-autoclave prepregs-Material properties, process phenomena, and manufacturing considerations[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 132-154.
[41] Wang X. Research and development on out-of-autoclave prepreg technology[C]//The 14th Annual Meeting of China Association for Science and Technology at the Venue 11: Low Cost, High Performance Composite Materials Development BBS, 2012: 1-6 (in Chinese). 王旭. 非热压罐预浸料成型技术的研究与发展[C]//第十四届中国科协年会第11分会场: 低成本, 高性能复合材料发展论坛论文集, 2012: 1-6.
[42] Geng J. Research on microwave curing process of epoxy resin and composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). 耿杰. 环氧树脂及其复合材料微波固化工艺研究[D]. 南京: 南京航空航天大学, 2013.
[43] Marsh G. Composites help propel GKN aerospace growth[J]. Reinforced Plastics, 2007, 51(7): 26-29.
[44] Xing L Y, Jiang S C, Zhou Z G. Progress of manufacture technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 1-9 (in Chinese). 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2): 1-9.
[45] Sozer E M, Šimá?ek P, Advani S G. Resin transfer molding (RTM) in polymer matrix composites[J]. Manufacturing Techniques for Polymer Matrix Composites (PMCs), 2012: 245.
[46] Qiu H B, Hu Q, Huang Z Y, et al. Discussion on RFI process of advanced composite material integral panel[J]. Equipment Manufacturing Technology, 2013(8): 49-51 (in Chinese). 邱航波, 胡清, 黄智勇, 等. 先进复合材料整体壁板RFI成型工艺探讨[J]. 装备制造技术, 2013(8): 49-51.
[47] Liu Q, Zhao L, Zhuo P, et al. Application of VARI technology in civil aircraft wing flap structure[J]. Aeronautical Manufacturing Technology, 2013(22): 80-83 (in Chinese). 刘强, 赵龙, 卓鹏, 等. VARI技术在民机襟翼结构上的应用研究[J]. 航空制造技术, 2013(22): 80-83.
[48] Ma J R, Huang F, Zhao L, et al. Analysis of the effect of control variables to the Z-Pin/RTM molding process[J]. Aeronautical Manufacturing Technology, 2014 (15): 118-121 (in Chinese). 马金瑞, 黄峰, 赵龙, 等. Z-Pin/RTM成型工艺影响因素分析及工艺研究[J]. 航空制造技术, 2014 (15): 118-121.
[49] Liang D, Jiang Y F, Xiong Z J, et al. Research and development of key manufacturing technology and restriction for resin composites[J]. Materials Review, 2011, 25(7): 5-8 (in Chinese). 梁栋, 蒋云峰, 熊志建, 等. 树脂基复合材料关键制造技术的研究进展与制约因素分析[J]. 材料导报, 2011, 25(7): 5-8.
[50] Yin X S, Du S Y. Development of rtmable polymer matrix composite materials and the related innovative technologies[C]//The 15th Composites Academic Conference Proceedings, 2008: 13-18 (in Chinese). 益小苏, 杜善义. 先进树脂转移模塑树脂基复合材料技术研究进展[C]//第十五届复合材料学术会议论文集, 2008: 13-18.
[51] Davies L W, Day R J, Bond D, et al. Effect of cure cycle heat transfer rates on the physical and mechanical properties of an epoxy matrix composite[J]. Composites Science and Technology, 2007, 67(9): 1892-1899.
[52] Qi J W, Li Y, Xiao J. Advanced pultrusion technology used on large aircraft composite structures[J]. Aeronautical Manufacturing Technology, 2013(15): 58-60 (in Chinese). 齐俊伟, 李勇, 肖军. 先进拉挤成形技术及其在大飞机复合材料结构中的应用[J]. 航空制造技术, 2013(15): 58-60.
[53] Fang Y W, Wang X F, Sun C, et al.The manufacture and application of composite wing spars[J]. Fiber Reinforced Plastics/Composites, 2014(2): 69-74 (in Chinese). 方宜武, 王显峰, 孙成, 等. 复合材料机翼翼梁的制造及应用概况[J]. 玻璃钢/复合材料, 2014(2): 69-74.
[54] Correia J R. Pultrusion of advanced fibre-reinforced polymer (FRP) composites[J]. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, 2013: 207.
[55] Yin X Y, Zhu B, Liu H Z, et al. Advance of the research in carbon fiber reinforced thermoplastic resin matrix composite[J]. Hi-Tech Fiber & Application, 2012, 36(6): 42-44 (in Chinese). 尹翔宇, 朱波, 刘洪正, 等. 碳纤维增强热塑性树脂基复合材料的研究现状[J]. 高科技纤维与应用, 2012, 36(6): 42-44.
[56] Song Q H, Wen L W, Yan B, et al.Automated tape laying technology of thermoplastic and resin-based composites[J]. Aeronautical Manufacturing Technology, 2013(15): 42-44 (in Chinese). 宋清华, 文立伟, 严飙, 等. 热塑性树脂基复合材料自动铺带技术[J]. 航空制造技术, 2013(15): 42-44.
[57] Wang X G, Yu Y, Li S M, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011(2): 44-47 (in Chinese). 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011(2): 44-47.
[58] Novo P J, Nunes J P, Silva J F, et al. Production of thermoplastics matrix preimpregnated materials to manufacture composite pultruded profiles[J]. Ciência & Tecnologia dos Materiais, 2013, 25(2): 85-91.
[59] Hufenbach W, Kupfer R, Pohl M, et al.Manufacturing and analysis of loop connections for thermoplastic composites[J]. Procedia Materials Science, 2013, 2: 144-152.
[60] Uddin N, Abro A M, Purdue J D, et al. Thermoplastic composites for bridge structures[J]. Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, 2013: 317.
[61] Deng S, Djukic L, Paton R, et al. Thermoplastic-epoxy interactions and their potential applications in joining composite 8 structures-A review[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 121-132.
[62] Yang L, Thomason J L. Development and application of micromechanical techniques for characterising interfacial shear strength in fibre-thermoplastic composites[J]. Polymer Testing, 2012, 31(7): 895-903.
[63] Xu R X, Zhang Q M, Yang J. Study on digitized modeling technology of composites component[J]. Aeronautical Manufacturing Technology, 2010(9): 17 (in Chinese). 徐荣欣, 张庆茂, 杨军. 复合材料构件数字化建模技术研究[J]. 航空制造技术, 2010(9): 17.
[64] Chen F, Wang J. Curing simulation of composites autoclave forming based on COMPRO mode[J]. Aerospace Materials & Technology, 2014, 44(1): 41-46 (in Chinese). 陈飞, 王健. 基于COMPRO模型的复合材料热压罐成型工艺仿真[J]. 宇航材料工艺, 2014, 44(1): 41-46.
[65] Zhu D L, Yi M B, Liao D M. Analysis on simulation to autoclave curing process of composites[J]. Aerospace Materials & Technology, 2014, 44(1): 53-56 (in Chinese). 朱大雷, 易茂斌, 廖敦明. 复合材料热压罐固化工艺仿真分析[J]. 宇航材料工艺, 2014, 44(1): 53-56.
[66] Yuan Z Y, Wang Y J, Zhang Y, et al. Multi coupled numeral simulation for curing process of composites with time-dependent properties of material[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 167-175 (in Chinese). 元振毅, 王永军, 张跃, 等. 基于材料性能时变特性的复合材料固化过程多场耦合数值模拟[J]. 复合材料学报, 2015, 32(1): 167-175.
[67] Li C L. Numerical simulation for autoclave curing design of composite materials[J]. Fiber Reinforced Plastics/Composites, 2014(11): 26-29 (in Chinese). 李彩林. 复合材料热压罐固化设计的数值模拟[J]. 玻璃钢/复合材料, 2014(11): 26-29.
[68] Bai G H, Yan D X, Zhang D M, et al. A study on the temperature filed distribute property of large frame type molds[J]. Acta Materiae Compositae Sinica, 2013, 30(Suppl): 169-174 (in Chinese). 白光辉, 晏冬秀, 张冬梅, 等. 大型复杂框架式模具温度场模拟[J]. 复合材料学报, 2013, 30(增刊): 169-174.
[69] Fu C Y, Li Y G, Li N Y, et al.Temperature uniformity optimizing method of the aircraft composite parts in autoclave processing[J]. Journal of Materials Science and Engineering, 2013, 31(2): 273-276 (in Chinese). 傅承阳, 李迎光, 李楠垭, 等. 飞机复合材料制件热压罐成型温度场均匀性优化方法[J]. 材料科学与工程学报, 2013, 31(2): 273-276.
[70] Wu J J, Guo J. Thermal-structure coupling deformation analysis of large composites forming mold[J]. Aeronautical Manufacturing Technology, 2012(23): 58-61 (in Chinese). 吴建军, 郭军. 大型复合材料成型工装热-结构耦合变形分析[J]. 航空制造技术, 2012(23): 58-61.
[71] Huang Q Z, Ren M F, Chen H R, et al. Simulation of temperature field for an advanced grid-stiffened composite structure in the co-curing process[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 141-147 (in Chinese). 黄其忠, 任明法, 陈浩然, 等. 复合材料先进网格结构共固化工艺的温度场模拟[J]. 复合材料学报, 2011, 28(3): 141-147.
[72] Zhang C, Liang X Z, Wang Y G, et al. Rules of impact of autoclave environment on frame mould temperature field of advanced composites[J]. Journal of Materials Science and Engineering, 2011, 29(4): 547-553 (in Chinese). 张铖, 梁宪珠, 王永贵, 等. 热压罐工艺环境对于先进复合材料框架式成型模具温度场的影响[J]. 材料科学与工程学报, 2011, 29(4): 547-553.
[73] Zhang C, Zhang B M, Wang Y G, et al.Refined simulation on curing temperature field of composite structure[J]. Development and Application of Materials, 2010, 25(3): 41-46 (in Chinese). 张铖, 张博明, 王永贵, 等. 复合材料结构固化温度场精化模拟[J]. 材料开发与应用, 2010, 25(3): 41-46.
[74] Wang Z Y, Chen G, Zheng Z C. Review on temperature field in curing process of fiber reinforced composites[J]. Engineering Plastics Application, 2010, 38(8): 85-88 (in Chinese). 王志远, 陈刚, 郑志才. 树脂基复合材料固化过程温度场研究进展[J]. 工程塑料应用, 2010, 38(8): 85-88.
[75] Hsiao S W, Kikuchi N. Numerical analysis and optimal design of composite thermoforming process[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(1): 1-34.
[76] Rabearison N, Jochum C, Grandidier J C. A FEM coupling model for properties prediction during the curing of an epoxy matrix[J]. Computational Materials Science, 2009, 45(3): 715-724.
[77] Antonucci V, Giordano M, Hsiao K T, et al. A methodology to reduce thermal gradients due to the exothermic reactions in composites processing[J]. International Journal of Heat and Mass Transfer, 2002, 45(8): 1675-1684.
[78] Guo Z S, Du S, Zhang B. Temperature field of thick thermoset composite laminates during cure process[J]. Composites Science and Technology, 2005, 65(3): 517-523.
[79] Liu X L, Crouch I G, Lam Y C. Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package[J]. Composites Science and Technology, 2000, 60(6): 857-864.
[80] Hubert P, Poursartip A. A review of flow and compaction modelling relevant to thermoset matrix laminate processing[J]. Journal of Reinforced Plastics and Composites, 1998, 17(4): 286-318.
[81] Springer G S. Resin flow during the cure of fiber reinforced composites[J]. Journal of Composite Materials, 1982, 16(5): 400-410.
[82] Dave R, Kardos J L, Dudukovi? M P. A model for resin flow during composite processing: Part 1-General mathematical development[J]. Polymer Composites, 1987, 8(1): 29-38.
[83] Davé R. A unified approach to modeling resin flow during composite processing[J]. Journal of Composite Materials, 1990, 24(1): 22-41.
[84] Smith G D, Poursartip A. A comparison of two resin flow models for laminate processing[J]. Journal of Composite Materials, 1993, 27(17): 1695-1711.
[85] Li Y, Zhang Z, Li M, et al. Numerical simulation of flow and compaction during the cure of laminated composites[J]. Journal of Reinforced Plastics and Composites, 2007, 26(3): 251-268.
[86] Hubert P, Vaziri R, Poursartip A. A two-dimensional flow model for the process simulation of complex shape composite laminates[J]. International Journal for Numerical Methods in Engineering, 1999, 44(1): 1-26.
[87] Yang X N, Lu M K, Chen H R, et al. Research on the compensation of die's thermal expansion for composites material[J]. Fiber Composites, 2014, 31(2): 29-32 (in Chinese). 杨曦凝, 路明坤, 陈浩然, 等. 复合材料工装变形补偿方法研究[J]. 纤维复合材料, 2014, 31(2): 29-32.
[88] Yuan T J, Zhou L S, Ge Y H. Research on prediction and application of process-induced deformation of composite structures undergoing autoclave processing[J]. Manufacturing Technology & Machine Tool, 2011(7): 145-148 (in Chinese). 袁铁军, 周来水, 葛友华. 热压罐成型复合材料构件的变形预测与应用研究[J]. 制造技术与机床, 2011(7): 145-148.
[89] Ma Z Y, Zhang J K, Cheng X Q. Development of numerical simulation of the curing process of resin matrix composites[J]. Aeronautical Manufacturing Technology, 2013(15): 78-81 (in Chinese). 马志阳, 张纪奎, 程小全. 树脂基复合材料固化过程的数值模拟方法进展[J]. 航空制造技术, 2013(15): 78-81.
[90] Li J C, He K, Peng J, et al. Research development on the curing deformation of fiber reinforced thermosetting composite materials parts[J]. Fiber Composites, 2013, 30(1): 45-48 (in Chinese). 李建川, 何凯, 彭建, 等. 纤维增强热固性复合材料构件的固化变形研究进展[J]. 纤维复合材料, 2013, 30(1): 45-48.
[91] Yue G Q, Zhang J Z, Zhang B M. Influence of mold on cure-induced deformation of composites structure[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 206-210 (in Chinese). 岳广全, 张嘉振, 张博明. 模具对复合材料构件固化变形的影响分析[J]. 复合材料学报, 2013, 30(4): 206-210.
[92] Tang Z W, Zhang B M. Prediction of curing deformation in integrated design and manufacture of composites[J]. Aeronautical Manufacturing Technology, 2014(15): 32-37 (in Chinese). 唐占文, 张博明. 复合材料设计制造一体化中的固化变形预报技术[J]. 航空制造技术, 2014(15): 32-37.
[93] Pang J, Huang C Y. Study on control method of cure-induced deformation for integrated composite panel[J]. Computer Simulation, 2013, 30(3): 119-122 (in Chinese). 庞杰, 黄传勇. 复合材料整体壁板固化变形控制方法研究[J]. 计算机仿真, 2013, 30(3): 119-122.
[94] Jia L J, Ye J R, Liu W P. Role of structural factors in process cure-induced deformation of the complex composites[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 261-265 (in Chinese). 贾丽杰, 叶金蕊, 刘卫平, 等. 结构因素对复合材料典型结构件固化变形影响[J]. 复合材料学报, 2013, 30(S1): 261-265.
[95] Zhang J K, Ma Z Y, Li X M, et al. Numerical simulation of cure deformation of composite taper shell with thermal protection layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8): 1037-1041 (in Chinese). 张纪奎, 马志阳, 李学梅, 等. 带防热层复合材料锥壳热固化变形的数值模拟[J]. 北京航空航天大学学报, 2013, 39(8): 1037-1041.
[96] Jiang T, Xu J F, Liu W P, et al. Simulation and verification of cure-induced deformation by stages for integrated composite structure[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 61-66 (in Chinese). 江天, 徐吉峰, 刘卫平, 等. 整体化复合材料结构分阶段固化变形预报方法及其实验验证[J]. 复合材料学报, 2013, 30(5): 61-66.
[97] Johnston A, Vaziri R, Poursartip A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469.
[98] Sunderland P, Yu W, Månson J A. A thermoviscoelastic analysis of process-induced internal stresses in thermoplastic matrix composites[J]. Polymer Composites, 2001, 22(5): 579-592.
[99] Nelson R H, Cairns D S. Prediction of dimensional changes in composite laminates during cure[J]. Tomorrow's Materials: Today, 1989, 34: 2397-2410.
[100] McEntee S P, ÓBrádaigh C M. Large deformation finite element modelling of single-curvature composite sheet forming with tool contact[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(1): 207-213.
[101] Zeng X, Raghavan J. Role of tool-part interaction in process-induced warpage of autoclave-manufactured composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1174-1183.
[102] Yue G Q, Zhang B M, Dai F H. Interaction between mold and composite parts during curing process[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 167-171 (in Chinese). 岳广全, 张博明, 戴福洪, 等. 固化过程中模具与复合材料构件相互作用分析[J]. 复合材料学报, 2010, 27(6): 167-171.
[103] Yue G Q, Zhang B M, Du S Y, et, al. Influence of the mould on curing induced shape distortion for resin matrix thermosetting composites[J]. Fiber Reinforced Plastics/Composites, 2010(5): 62-65 (in Chinese). 岳广全, 张博明, 杜善义, 等. 模具对热固性树脂基复合材料固化变形的影响[J]. 玻璃钢/复合材料, 2010(5): 62-65.
[104] Zhang J, Liao W H, Li Y G. Finite element analysis of the mould influence on process-induced deformation of cylindrical composite part[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 191-195 (in Chinese). 张吉, 廖文和, 李迎光. 模具对柱面复合材料构件固化变形影响的有限元分析[J]. 复合材料学报, 2012, 29(5): 191-195.
[105] Twigg G, Poursartip A, Fernlund G. An experimental method for quantifying tool-part shear interaction during composites processing[J]. Composites Science and Technology, 2003, 63(13): 1985-2002.
[106] Melo J D, Radford D W. Modeling manufacturing distortions in flat symmetric[C]//31st International Technical Conference Composite Laminates, 1999: 592-603.
[107] Twigg G, Poursatip A, Ferlund G. Tool-part interaction in composite processing Part I: Experimental investigation and analytical model[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 121-133
[108] Twigg G, Poursatip A, Ferlund G. Tool-part interaction in composite processing Part II: Numerical modeling[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 135-141
[109] Li H Y. Airworthiness issues of composite applied in civil aircraft[J]. Aeronautical Manufacturing Technology, 2009(16): 26-29 (in Chinese). 李宏运. 复合材料在民机应用中有关适航问题的探讨[J]. 航空制造技术, 2009(16): 26-29.
[110] Shen Z, Shi Y H, Li G M. Composite shared database[J]. Advanced Materials Industry, 2012(2): 11-14 (in Chinese). 沈真, 史有好, 李国明. 复合材料共享数据库[J]. 新材料产业, 2012(2): 11-14.
[111] Gao H, Sun C L, Du B R, et al. Construction of process database for typical composite component[J]. Aeronautical Manufacturing Technology, 2011(21): 87-91 (in Chinese). 高航, 孙长乐, 杜宝瑞, 等. 复合材料典型构件加工工艺数据库的构建[J]. 航空制造技术, 2011(21): 87-91.
[112] Wang X, Xie F, Li M, et al. Correlated rules between complex structure of composite components and manufacturing defects in autoclave molding technology[J]. Journal of Reinforced Plastics and Composites, 2009, 28(22): 2791-2803.
[113] Wang X M, Xie F Y, Li M, et al. Effect rules of complex structure on manufacturing defects for composites in autoclave molding[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 757-762 (in Chinese). 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料复杂结构对制造缺陷的影响规律[J]. 航空学报, 2009, 30(4): 757-762.
[114] Xie F Y, Wang X M, Li M, et al. Correlation between geometric factors of composite components and manufacturing defects[J]. Journal of Materials Engineering, 2009(Suppl): 84-88 (in Chinese). 谢富原, 王雪明, 李敏, 等. 复合材料结构几何要素与制造缺陷的关联分析[J]. 材料工程, 2009(增刊): 84-88.
[115] Xie F Y, Wang X M, Li M, et al. Statistical study of delamination area distribution in composite components fabricated by autoclave process[J]. Applied Composite Materials, 2009, 16(5): 285-295.
[116] Wang X M, Xie F Y, Li M, et al. Factor analysis of delamination in composite components produced by autoclave process[C]//The 15th National Conference on Composite Materials, 2008: 526-530 (in Chinese). 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料构件分层缺陷影响因素分析[C]//第十五届全国复合材料学术会议, 2008: 526-530.
[117] Wang X M, Xie F Y, Li M, et al. Sub-cluster theory analysis of process quality for composite components by autoclave process[J]. Acta Materiae Compositae Sinica, 2010, 27(4): 70-74 (in Chinese). 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料构件工艺质量的群子理论分析[J]. 复合材料学报, 2010, 27(4): 70-74.
[118] Xin C, Gu Y,Li M, et al. Experimental and numerical study on the effect of rubber mold configuration on the compaction of composite angle laminates during autoclave processing[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1353-1360.
[119] Fernlund G, Courdji R, Poursartip A, et al. Process induced deformations of the Boeing 777 aft strut trailing edge fairing[C]//33 rd International SAMPE Technical Conference, 2001: 347-355.
[120] Li M, Gu Y Z, Li Y, et al. Numerical simulation based process window for consolidation of thermoset composite laminates[J].Polymers & Polymer Composites, 2009, 17(2): 73-82.
[121] Gu Y Z, Li M, Zhang Z G, et al. Effects of resin storage aging on rheological property and consolidation of composite laminates[J]. Polymer Composites, 2009, 30(8): 1081-1090.
[122] Pu Y W. Thoughts on the manufacturing system of advanced composites[J]. Aeronautical Manufacturing Technology, 2014(15): 26-29 (in Chinese). 蒲永伟. 关于先进复合材料制造体系的几点思考[J]. 航空制造技术, 2014(15): 26-29.
[123] Xin C, Gu Y, Li M, et al. Online monitoring and analysis of resin pressure inside composite laminate during zero-bleeding autoclave process[J]. Polymer Composites, 2011, 32(2): 314-323.
[124] Zhou Z, Li M, Gu Y Z, et al. Resin flow monitoring inside composite laminate during resin film infusion process[J]. Polymer Composites, 2014, 35(4): 681-690.
[125] Zheng Y Z, Gu Y Z, Sun Z J, et al. Core crush of Nomex honeycomb sandwich structure during co-curing process with vacuum bag[J]. Acta Materiae Compositae Sinica, 2009, 26(4): 29-35 (in Chinese). 郑义珠, 顾轶卓, 孙志杰, 等. Nomex蜂窝夹层结构真空袋共固化过程蜂窝变形[J]. 复合材料学报, 2009, 26(4): 29-35.
[126] Gu Y Z, Li M, Li Y, et al. Pressure transfer behavior of rubber mold and the effects on consolidation of L-shape composite laminates[J]. Polymer & Polymer Composites, 2010, 18(3): 167-174.
[127] Wang X, Xie F Y, Li M, et al.Influence of core fillers on resin flow and fiber compaction of co-cured skin-to-stiffener structures[J]. Polymer Composites, 2010, 31(8): 1360-1368.
[128] Liu X L, Gu Y Z, Li M, et al.Compacting pressure measuring method in autoclave processing of polymer composites using film sensor[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 67-73 (in Chinese). 刘小龙, 顾轶卓, 李敏, 等. 采用薄膜传感器的树脂基复合材料热压罐工艺密实压力测试方法[J]. 复合材料学报, 2013, 30(5): 67-73. |