ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2015, Vol. 36 ›› Issue (2): 422-440.doi: 10.7527/S1000-6893.2014.0279
• Review • Previous Articles Next Articles
LI Shuang1,2, JIANG Xiuqiang1,2
Received:
2014-04-15
Revised:
2014-10-08
Online:
2015-02-15
Published:
2014-10-09
Supported by:
National Natural Science Foundation of China (61273051, 60804057); National High-tech Research and Development Program of China (2011AA7034057E, 2012AA121601)
CLC Number:
LI Shuang, JIANG Xiuqiang. Review and prospect of decelerator technologies for Mars entry[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(2): 422-440.
[1] Braun R D, Manning R M. Mars exploration entry, descent, and landing challenges[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 310-323.[2] Perminov V G. The difficult road to Mars — a brief history of Mars exploration in the Soviet Union, NASA NP-1999-06-251-HQ[R]. Washington, D.C.: NASA, 1999.[3] Fallon I I. Design and development of the main parachute for the Beagle 2 Mars lander, AIAA-2003-2153[R]. Reston: AIAA, 2003.[4] Li S, Jiang X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69: 40-57.[5] Li S, Peng Y M, Lu Y P. Review and prospect of Mars EDL navigation guidance and control technologies[J]. Journal of Astronautics, 2010, 31(3): 621-627 (in Chinese). 李爽, 彭玉明, 陆宇平. 火星EDL导航、制导与控制技术综述与展望[J]. 宇航学报, 2010, 31(3): 621-627.[6] Dwyer-Cianciolo A M, Davis J L, Komar D R, et al. Entry, descent and landing systems analysis study: Phase 1 report, NASA-TM-2010-216720[R]. Washington, D.C.: NASA, 2010.[7] Dwyer-Cianciolo A M, Davis J L, Engelund W C, et al. Entry, descent and landing systems analysis study: Phase 2 report on exploration feed-forward systems, NASA/TM-2011-217055[R]. Washington, D.C.: NASA, 2011.[8] Dwyer-Cianciolo A M, Zang T A, Sostaric R R, et al. Overview of the NASA entry, descent and landing systems analysis exploration feed-forward study, NASA NF1676L-12195[R]. Washington, D.C.: NASA, 2011.[9] Way D W, Powell R W, Chen A, et al. Mars science laboratory: entry, descent, and landing system performance, NASA LF99-3989[R]. Washington, D.C.: NASA, 2006.[10] Edquist K T, Dyakonov A A, Wright M J, et al. Aerothermodynamic design of the Mars science laboratory backshell and parachute cone, AIAA-2009-4078[R]. Reston: AIAA, 2009.[11] Dyakonov A A, Schoenenberger M, Scallion W I, et al. Aerodynamic interference due to MSL reaction control system, AIAA-2009-3915[R]. Reston: AIAA, 2009.[12] Cruz J R, Cianciolo A D, Powell R W, et al. Entry, descent, and landing technology concept trade study for increasing payload mass to the surface of Mars, NASA 20050158774[R]. Washington, D.C.: NASA, 2005.[13] Zang T A, Cianciolo A M D, Ivanov M C, et al. Overview of the NASA entry, descent and landing systems analysis studies for large robotic-class missions, AIAA-2011-7294[R]. Reston: AIAA, 2011.[14] Shidner J D, Davis J L, Dwyer-Cianciolo A M, et al. Large mass, entry, descent and landing sensitivity results for environmental, performance, and design parameters, AIAA-2010-7973[R]. Reston: AIAA, 2010.[15] Wells G W, Lafleur J M, Verges A, et al. Entry, descent, and landing challenges of human Mars exploration[C]//29th AAS Guidance and Control Conference, Breckenridg. San Diego: AAS Publications Office, 2006.[16] Howard A, Stanley D, Williams-Byrd J. Mars exploration entry and descent and landing technology assessment figures of merit[C]//AIAA SPACE 2001 Conference and Exposition. Reston: AIAA, 2001.[17] Beegle L W, Wilson M G, Abillerira F, et al. A concept for NASA's Mars 2016 astrobiology field laboratory[J]. Astrobiology, 2007, 7(4): 545-577.[18] Wright M J, Krasa P W, Hwang H H, et al. Overview of entry descent and landing investments in the NASA exploration technology development program[C]//2011 IEEE Aerospace Conference. New York: IEEE, 2011.[19] Cruz J R, Lingard J S. Aerodynamic decelerators for planetary exploration: past, present, and future, AIAA-2006-6792[R]. Reston: AIAA, 2006.[20] Christian J A, Wells G W, Lafleur J M, et al. Extension of traditional entry, descent, and landing technologies for human Mars exploration[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 130-141.[21] Smith B P, Tanner C L, Mahzari M, et al. A historical review of inflatable aerodynamic decelerator technology development[C]//2010 IEEE Aerospace Conference, Paper 1276. New York: IEEE, 2010.[22] Dwyer-Cianciolo A M, Davis J L, Shidner J D, et al. Entry, descent and landing systems analysis: exploration class simulation overview and results, AIAA-2010-7970[R]. Reston: AIAA, 2010.[23] Allen C, Robin B, Paul B, et al. Entry system design and performance summary for the Mars science laboratory mission[C]//23rd AAS/AIAA Space Flight Mechanics Meeting. San Diego: AAS Publications Office, 2013.[24] Viviani A, Pezzella G, Golia C. Aerothermodynamic analysis of a space vehicle for manned exploration missions to Mars[C]//27th Congress of the International Council of the Aeronautical Sciences. Nice: ICAS, 2010.[25] Pezzella G, Viviani A. Aerodynamic analysis of a manned space vehicle for missions to Mars[J]. Journal of Thermodynamics, 2011, Article ID 857061: 1-13.[26] Pezzella G, Viviani A. Aerodynamic analysis of a Mars exploration manned capsule[J]. Acta Astronautica, 2011, 69(11): 975-986.[27] Viviani A, Pezzella G. Aerodynamic analysis of a capsule vehicle for a manned exploration mission to Mars, AIAA-2009-7386[R].Reston: AIAA, 2009.[28] Musil J L. Study of expandable, terminal decelerators for Mars atmosphere entry: Volume I, GER-12842[R]. Washington, D.C.: NASA, 1966.[29] Musil J L. Study of expandable, terminal decelerators for Mars atmosphere entry: Volume II, GER-12842[R]. Washington, D.C.: NASA, 1966.[30] Keville J F. Semi-rigid or non-rigid structures for re-entry applications, Part II: fabrication and test, SG-335-47-PT-2[R]. Akron, OH: Wright-Patterson Air Force Base, 1967.[31] Keville J F. Semi-rigid or non-rigid structures for re-entry applications, Part III: appendices, AFML TR-67-310[R]. Ohio: Air Force Materials Laboratory, Wright-Patterson Air Force Base, 1967.[32] Sengupta A. Overview of the Mars science laboratory parachute decelerator system, AIAA-2007-2578[R]. Reston: AIAA, 2007.[33] Prabhu D I K, Saunders D A. On heatshield shapes for Mars entry capsules, AIAA-2012-0399[R]. Reston: AIAA, 2012.[34] Reichenau D E A. Aerodynamic characteristics of disk-gap-band parachutes in the wake of Viking entry forebodies at Mach numbers from 0.2 to 2.6, AEDC-TR-72-78[R]. Tennessee: Arnold Air Force Station, 1972.[35] Lau R A, Hussong J C. The Viking Mars lander decelerator system, AIAA-1970-1162[R]. Reston: AIAA, 1970.[36] Gillis C L. The Viking decelerator system—an overview, AIAA-1973-0442[R]. Reston: AIAA, 1973.[37] Murrow H N, Eckstrom C V, Henke D W. Development flight tests of the Viking decelerator system, AIAA-1973-0455[R]. Reston: AIAA, 1973.[38] Dillman R A, Cheatwood F M, Corliss J M, et al. Technology developments for atmospheric entry systems[C]//3rd International Planetary Probe Workshop. Washington, D. C.: NASA, 2005.[39] Alkandry H, Boyd I D, Reed E M, et al. Numerical study of hypersonic wind tunnel experiments for Mars entry aeroshells, AIAA-2009-3918[R]. Reston: AIAA, 2009.[40] Fallon I E J. System design overview of the Mars Pathfinder decelerator subsystem, AIAA-1997-1511[R]. Reston: AIAA, 1997.[41] Witkowski A. Mars Pathfinder parachute system performance, AIAA-1999-1701[R]. Reston: AIAA, 1999.[42] Desai P N, Schofield J T, Lisano M E. Flight reconstruction of the Mars Pathfinder disk-gap-band parachute drag coefficient, AIAA-2003-2126[R]. Reston: AIAA, 2003.[43] Witkowski A, Kandis M, Bruno R, et al. Mars exploration rover parachute system performance, AIAA-2005-1605[R]. Reston: AIAA, 2005.[44] Desai P N, Knocke P C. Mars exploration rovers entry, descent, and landing trajectory analysis, AIAA-2004-5092[R]. Reston: AIAA, 2004.[45] Witkowski A, Bruno R. Mars exploration rover parachute decelerator system program overview, AIAA-2003-2100[R]. Reston: AIAA, 2003.[46] Steltzner A, Desai P, Lee W, et al. The Mars exploration rovers entry descent and landing and the use of aerodynamic decelerators, AIAA-2003-2125[R]. Reston: AIAA, 2003.[47] Myron R G, Benjamin D C. Overview of the phoenix entry, descent, and landing system architecture, AIAA- 2008-7218[R]. Reston: AIAA, 2008.[48] Robert C B, Prasun N D. Mars phoenix entry, descent, and landing trajectory and atmosphere reconstruction[J]. Journal of Spacecraft and Rockets, 2011, 48(5): 809-821.[49] Mahzari M, Braun R D, White T R. Reconstruction of Mars Pathfinder aerothermal heating and heatshield material response using inverse methods, AIAA-2012-2872[R]. Reston: AIAA, 2012.[50] Ingoldby R N, Michel F C, Flaherty T M, et al. Entry data analysis for Viking landers 1 and 2, NASA CR-159388[R]. Washington, D.C.: NASA, 1976.[51] Allen C, Ashwin V, Alicia C, et al. Atmospheric risk assessment for the Mars science laboratory entry, descent, and landing system[C]//2010 IEEE Aerospace Conference. New York: IEEE, 2010.[52] Ashley M K, Gregory F D, Curtis K I, et al. A concept for the entry, descent, and landing of high-mass payloads at Mars[J]. Acta Astronautica, 2010, 66(7-8): 1146-1159.[53] Palmer G, Allen G, Tang C, et al. Coupled fluids-radiation analysis of a high-mass Mars entry vehicle, AIAA-2011-3495[R]. Reston: AIAA, 2011.[54] Akin D. Applications of ultra-low ballistic coefficient entry vehicles to existing and future space missions, AIAA-2010-1928[R]. Reston: AIAA, 2010.[55] Meginnis I, Putnam Z, Clark I, et al. Guided entry performance of low ballistic coefficient vehicles at Mars[J]. Journal of Spacecraft and Rockets, 2013, 50(5): 1047-1059.[56] Witkowski A, Brown G. Mars deployable decelerators capability roadmap summary[C]//2006 IEEE Aerospace Conference. New York: IEEE, 2006.[57] Cheatwood F M, Corliss J M, Player C J, et al. Inflatable entry systems technologies for NASA exploration, AIAA-2005-6811[R]. Reston: AIAA, 2005.[58] Graves C A, Westhelle C H, Madsen C, et al. Inflatable aeroshells as an alternative aerodynamic decelerator[J]. Advances in the Astronautical Sciences, 2005, 121: 279-291.[59] Player C J, Cheatwood F M, Corliss J M. Development of inflatable entry systems technologies[C]//3rd International Planetary Probe Workshop. Washington, D.C.: NASA, 2005.[60] Brown G J, Lingard J S, Darley M G, et al. Inflatable aerocapture decelerators for Mars orbiters, AIAA-2007-2543[R]. Reston: AIAA, 2007.[61] Clark I G, Hutchings A L, Tanner C L, et al. Supersonic inflatable aerodynamic decelerators for use on future robotic missions to Mars[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 340-352.[62] Clark I G. Aerodynamic design, analysis, and validation of a supersonic inflatable decelerator[D]. Atlanta: Georgia Institute of Technology, 2009.[63] Karagiozis K, Cirak F, Kamakoti R, et al. Computational fluid-structure interaction methods for simulation of inflatable aerodynamic decelerators, AIAA-2009-2968[R]. Reston: AIAA, 2009.[64] Wei J Z, Tan H F, Wang W Z, et al. New trends in inflatable re-entry aeroshell[J]. Journal of Astronautics, 2013, 34(7): 881-890 (in Chinese). 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7): 881-890.[65] Hughes S J, Cheatwood F M, Dillman R A, et al. Hypersonic inflatable aerodynamic decelerator (HIAD) technology development overview, AIAA-2011-2524[R]. Reston: AIAA, 2011.[66] Beck R A, Arnold J O, White S, et al. Overview of initial development of flexible ablators for hypersonic inflatable aerodynamic decelerators, AIAA-2011-2511[R]. Reston: AIAA, 2011.[67] Stein J, Sandy C. Recent developments in inflatable airbag impact attenuation systems for Mars exploration, AIAA-2003-1900[R]. Reston: AIAA, 2003.[68] Brown G J, Epp C, Graves C, et al. Hypercone inflatable supersonic decelerator, AIAA-2003-2167[R]. Reston: AIAA, 2003.[69] Smith B P, Braun R D, Clark I G. Oscillation of supersonic inflatable aerodynamic decelerators at Mars, AIAA-2011-2516[R]. Reston: AIAA, 2011.[70] McShera J T. Aerodynamic drag and stability characteristics of towed inflatable decelerators at supersonic speeds, NASA TN D-1601[R]. Washington, D.C.: NASA, 1963.[71] Barton R R. Development of attached inflatable decelerators for supersonic application, NASA CR-66613[R]. Washington, D.C.: NASA, 1968.[72] Mikulas J M M, Bohon H L. Development status of attached inflatable decelerators[J]. Journal of Spacecraft and Rockets, 1969, 6(6): 654-660.[73] Bohon H L, Miserentino R. Attached inflatable decelerator (AID) performance evaluation and mission application study[J]. Journal of Spacecraft and Rockets, 1971, 8(9): 952-957.[74] Faurote G L, Burgess J L. Thermal and stress analysis of an attached inflatable decelerator (AID) deployed in the Mars and Earth atmospheres, GER-14939[R]. Washington, D.C.: NASA, 1971.[75] Faurote G L. Design, fabrication, and static testing of attached inflatable decelerator (AID) models, NASA CR-111831[R]. Washington, D.C.: NASA, 1971.[76] McShera J T, Keyes J W. Wind-tunnel investigations of a balloon as a towed decelerator at Mach numbers from 1.47 to 2.50, NASA TN-D-919[R]. Washington, D.C.: NASA, 1961.[77] Alexander W C. Investigation to determine the feasibility of using inflatable balloon type drag devices for recovery applications in the transonic, supersonic, and hypersonic flight regime Part II: Mach 4 to Mach 10 feasibility investigation, ASD TDR-62-702[R]. Akron, OH: Wright-Patterson Air Force Base, 1962.[78] Moog R D, Michel F C. Balloon launched Viking decelerator test program summary report, NASA CR-112288[R]. Washington, D.C.: NASA, 1973.[79] Deveikis W D, Sawyer J W. Aerodynamic characteristics of tension shell shapes at Mach 3.0, NASA TN D-3633[R]. Washington, D.C.: NASA, 1966.[80] Robinson J C, Jordan A W. Exploratory experimental aerodynamic investigation of tension shell shapes at Mach 7, NASA TN-D-2994[R]. Washington, D.C.: NASA, 1965.[81] Creel T R, Jr. Longitudinal aerodynamic characteristics of a tension shell entry configuration at Mach 20, NASA TN-D-3541[R]. Washington, D.C.: NASA, 1966.[82] Kyser A C. Deployment mechanics for an inflatable tension-cone decelerator, NASA CR-929[R]. Washington, D.C.: NASA, 1967.[83] Marraffa L, Kassing D, Baglioni P, et al. Inflatable re-entry technologies: flight demonstration and future prospects[J]. ESA Bulletin, 2000, 103: 78-85.[84] Walther S, Thaeter J, Reimers C, et al. New space application opportunities based on the inflatable reentry & descent technology IRDT[C]//2003 AIAA/ICAS International Air and Space Symposium and Exposition. 2003.[85] Wilde D, Walther S. Flight test and ISS application of the inflatable reentry and descent technology (IRDT)[J]. Acta Astronautica, 2002, 51(1-9): 83-88.[86] Evans D, Reynier P. Postflight analysis of inflatable reentry and descent technology blackout during Earth reentry[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 800-809.[87] Walther S. New space application opportunities based on the inflatable reentry & descent technology (IRDT), AIAA-2003-2839[R]. Reston: AIAA, 2003.[88] Alifanov O M, Outchvatov V I, Pichkhactzo K M. Thermal protection of re-entry vehicles with the usage of inflatable systems[J]. Acta Astronautica, 2003, 53(4-10): 541-546.[89] Wang L S. Research on control method for moving mass reentry vehicle[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 王连胜. 充气式再入飞船的变质心控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.[90] Xu J Y. Stractural dynamic characteristics analysis of inflatable re-entry vehicle[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese). 许家裕. 充气式返回飞行器的结构动态特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.[91] He W L, Cai J J, Wang L F, et al. Inflatable reentry technologies research for single launching and multi-reentry (SLMR) space transporting system[J]. Manned Spaceflight, 2011(4): 37-42 (in Chinese). 贺卫亮, 才晶晶, 汪龙芳, 等. 一次发射多次返回的充气式再入飞行器技术[J]. 载人航天, 2011(4): 37-42.[92] Xia G, Cheng W K, Qin Z Z. Development of flexible thermal protection for system inflatable re-entry vehicles[J]. Aerospace Materials & Technology, 2003(6): 1-6 (in Chinese). 夏刚, 程文科, 秦子增. 充气式再入飞行器柔性防护系统的发展状况[J]. 宇航材料工艺, 2003(6): 1- 6.[93] Cao X. The application of Al2O3 fibers in space inflatable aerodynamic decelerator structures[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(5): 16-21 (in Chinese). 曹旭. Al2O3纤维在空间充气式气动阻尼结构中的应用[J]. 航天返回与遥感, 2010, 31(5): 16-21.[94] Tang W, Gui Y W, Wang A L, et al. Aerodynamic design for an inflatable reentry and descent decelerator[J]. Journal of Astronautics, 2007, 28(2): 265-268 (in Chinese). 唐伟, 桂业伟, 王安龄, 等. 充气气囊减速方案的气动设计研究[J]. 宇航学报, 2007, 28(2): 265-268.[95] Hughes S J, Dillman R A, Starr B R, et al. Inflatable re-entry vehicle experiment (IRVE) design overview, AIAA-2005-1636[R]. Reston: AIAA, 2005.[96] Starr B R, Bose D M, Thornblom M, et al. Inflatable reentry vehicle experiment flight performance simulations[C]//53rd JANNAF Propulsion Meeting. Reston: AIAA, 2005.[97] Lindell M C, Hughes M C, Dixon M, et al. Structural analysis and testing of the inflatable re-entry vehicle experiment (IRVE), AIAA-2006-1699[R]. Reston: AIAA, 2006.[98] Dillman R, Hughes S J, Bodkin R J, et al. Flight performance of the inflatable re-entry vehicle experiment II[C]//7th Interplanetary Probe Workshop. Washington, D.C.: NASA, 2010.[99] O'Keefe S A, Bose D M. IRVE-II post-flight trajectory reconstruction, AIAA-2010-7515[R]. Reston: AIAA, 2010.[100] Lichodziejewski L, Kelley C, Tutt B, et al. Design and testing of the inflatable aeroshell for the IRVE-3 flight experiment[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.[101] Litton D K, Bose D M, Cheatwood F M, et al. Inflatable re-entry vehicle experiment (IRVE)-4 overview, AIAA-2011-2580[R]. Reston: AIAA, 2011.[102] Player C. PAIDAE thermal protection system testing final report FY2008, PAI-DAE-3.3-012[R]. Washington, D.C.: NASA Langley Research Center, 2008.[103] McGuire M K, Arnold J O, Covington M A, et al. Flexible ablative thermal protection sizing on inflatable aerodynamic decelerator for human Mars entry descent and landing, AIAA-2011-0344[R]. Reston: AIAA, 2011.[104] Mazaheri A. High-energy atmospheric reentry test aerothermodynamic analysis[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 270-281.[105] Steinfeldt B A, Theisinger J E, Korzun A M, et al. High mass Mars entry, descent, and landing architecture assessment, AIAA-2009-6684[R]. Reston: AIAA, 2009.[106] Reza S, Hund R, Kustas F, et al. Aerocapture inflatable decelerator (AID) for planetary entry, AIAA-2007-2516[R]. Reston: AIAA, 2007.[107] Samareh J A. Estimating mass of inflatable aerodynamic decelerators using dimensionless parameters[C]//8th International Planetary Probe Workshop. Washington, D.C.: NASA, 2011.[108] Hutchings A L, Braun R D, Masuyama K, et al. Experimental determination of material properties for inflatable aeroshell structures, AIAA-2009-2949[R]. Reston: AIAA, 2009.[109] Clark I G, Cruz J R, Hughes M F, et al. Aerodynamic and aeroelastic characteristics of a tension cone inflatable aerodynamic decelerator, AIAA-2009-2967[R]. Reston: AIAA, 2009.[110] Kustas F M, Rawal S P, Willcockson W H, et al. Inflatable decelerator ballute for planetary exploration spacecraft, AIAA-2000-1795[R]. Reston: AIAA, 2000.[111] Gnoffo P A. Aerothermodynamic analyses of towed ballutes, AIAA-2006-3771[R]. Reston: AIAA, 2006.[112] Rasheed A, Fujii K, Hornung H, et al. Experimental investigation of the flow over a toroidal aerocapture ballute, AIAA-2001-2460[R]. Reston: AIAA, 2001.[113] McIntyre T, Lourel I, Eichmann T, et al. Experimental expansion tube study of the flow over a toroidal ballute[J]. Journal of Spacecraft and Rockets, 2004, 41(5): 716-725.[114] Fallon J II E. Supersonic stabilization and deceleration-ballutes revisited, AIAA-1995-1584-CP[R]. Reston: AIAA, 1995.[115] Houtz N E. Optimization of inflatable drag devices by isotensoid design, AIAA-1964-0437[R]. Reston: AIAA, 1964.[116] Axdahl E, Cruz J R, Schoenenberger M, et al. Flight dynamics of an aeroshell using an attached inflatable aerodynamic decelerator, AIAA-2009-2963[R]. Reston: AIAA, 2009.[117] Venkatapathy E, Arnold J, Fernandez I, et al. Adaptive deployable entry and placement technology (ADEPT): a feasibility study for human missions to Mars, AIAA- 2011-2608[R]. Reston: AIAA, 2011.[118] Hughes S J, Ware J S, Del Corso J A, et al. Deployable aeroshell flexible thermal protection system testing, AIAA-2009-2926[R]. Reston: AIAA, 2009.[119] Venkatapathy E. Adaptive deployable entry placement technology: a technology development project funded by game changing development program of the office of the chief technologist[C]//9th International Planetary Probe Workshop. Washington, D.C.: NASA, 2012.[120] Smith B, Venkatapathy E, Wercinski P, et al. Venus in situ explorer mission design using a mechanically deployed aerodynamic decelerator[C]//2013 IEEE Aerospace Conference. New York: IEEE, 2013.[121] Arnold J O, Peterson K H, Yount B C, et al. Thermal and structural performance of woven carbon cloth for adaptive deployable entry and placement technology[C]//22nd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2013.[122] Deitering J S, Hilliard E E. Wind tunnel investigation of flexible aerodynamic decelerator characteristics at Mach numbers 1.5 to 6.0, AEDC TDR-65-110[R]. Tennessee: Arnold Air Force Station, 1965.[123] Nebiker F R. Aerodynamic deployable decelerator performance-evaluation program, AFFDL TR-65-27[R]. Akron, OH: Wright-Patterson Air Force Base, 1965.[124] Bloetscher F. Aerodynamic deployable decelerator performance-evaluation program, Phase II, AFFDL TR-67-24[R]. Akron, OH: Wright-Patterson Air Force Base, 1967.[125] Schmid M, Trabandt U. Deployable heat shield and deceleration structure for spacecraft: U.S. Patent 7-837-154 [P]. 2010-11-23.[126] Stern E, Barnhardt M, Venkatapathy E, et al. Investigation of transonic wake dynamics for mechanically deployable entry systems[C]//2012 IEEE Aerospace Conference. New York: IEEE, 2012.[127] Venkatapathy E, Arnold J, Fernandez I, et al. Transformable entry system technologies (TEST) concept feasibility final report, NASA TM-2011-215970[R]. Washington, D.C.: NASA, 2011.[128] Venkatapathy E, Wercinski P, Beck R, et al. Mechanically-deployed hypersonic decelerator and conformal ablator technologies for Mars missions, ARC-E-DAA-TN5858[R]. Washington, D.C.: NASA, 2012.[129] Edquist K T, Dyakonov A A, Wright M J, et al. Aerothermodynamic design of the Mars science laboratory heatshield, AIAA-2009-4075[R]. Reston: AIAA, 2009.[130] Yount B, Prabhu D, Kruger C, et al. Structures and mechanisms design concepts for adaptive deployable entry placement technology, AIAA-2013-1369[R]. Reston: AIAA, 2013.[131] Gillis C L. Deployable aerodynamic decelerators for space missions[J]. Journal of Spacecraft and Rockets, 1969, 6(8): 885-890.[132] Korzun A M, Braun R D, Cruz J R. A Survey of supersonic retropropulsion technology for Mars entry, descent, and landing[C]//2008 IEEE Aerospace Conference. New York: IEEE, 2008.[133] Edquist K T, Dyakonov A A, Korzun A M, et al. Development of supersonic retro-propulsion for future Mars entry, descent, and landing systems, AIAA-2010-5046[R]. Reston: AIAA, 2010.[134] Korzun A M, Braun R D. Performance characterization of supersonic retropropulsion for application to high-mass Mars entry, descent, and landing, AIAA-2009-5613[R]. Reston: AIAA, 2009.[135] Korzun A M. Aerodynamic and performance characterization of supersonic retropropulsion for application to planetary entry and descent[D]. Atlanta, GA: Georgia Institute of Technology, 2012.[136] Alkandry H. Aerodynamic interactions of propulsive deceleration and reaction control system jets on Mars—entry aeroshells[D]. Ann Arbor: University of Michigan, 2012.[137] Charczenko N, Hennessey K. Investigation of a retrorocket exhausting from the nose of a blunt body into a supersonic free stream, NASA TN D-751[R]. Washington, D.C.: NASA, 1961.[138] Romeo D J, Sterrett J R. Exploratory investigation of the effect of a forward-facing jet on the bow shock of a blunt body in a Mach number 6 free stream, NASA TN D-1605[R]. Washington, D.C.: NASA, 1963.[139] Charwat A F, Allegre J. Interaction of a supersonic stream and a transverse supersonic jet[J]. AIAA Journal, 1964, 2(11): 1965-1972.[140] Alexander W C, Lau R A. State-of-the-art study for high-speed deceleration and stabilization devices, GER-12616[R]. Washington, D.C.: NASA, 1966.[141] Kyriss C L, Rie H. Theoretical investigation of entry vehicle stability in the Mars atmosphere[J]. Journal of Spacecraft and Rockets, 1967, 4(2): 272-275.[142] Keyes J W, Hefner J N. Effect of forward facing jets on aerodynamic characteristics of blunt configurations at Mach 6[J]. Journal of Spacecraft and Rockets, 1967, 4(4): 533-534.[143] Jarvinen P, Adams R. The aerodynamic characteristics of large angled cones with retrorockets, NASA 7-576[R]. Washington, D.C.: NASA, 1970.[144] Jarvinen P, Adams R. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles, AIAA-1970-0219[R]. Reston: AIAA, 1970.[145] Fomin V M, Maslov A A, Malmuth N D. Influence of a counter flow plasma jet on supersonic blunt-body pressures[J]. AIAA Journal, 2002, 40(6): 1170-1177.[146] Daso E O, Pritchett V E, Wang T S. The dynamics of shock dispersion and interactions in supersonic freestreams with counter flowing jets, AIAA-2007-1423[R]. Reston: AIAA, 2007.[147] Marsh C L, Braun R D. Fully-propulsive Mars atmospheric transit strategies for high-mass payload missions[C]//2009 IEEE Aerospace conference. New York: IEEE, 2009.[148] Drake B G. Human exploration of Mars, design reference architecture 5.0, NASA SP-2009-566[R]. Washington, D.C.: NASA, 2009.[149] Drake B G. Human exploration of Mars: challenges and design reference architecture 5.0[J]. Journal of Cosmology, 2010, 12: 3578-3587.[150] Drake B G, Hoffman S J, Beaty D W. Human exploration of Mars, design reference architecture 5.0[C]//2010 IEEE Aerospace Conference. New York: IEEE, 2010.[151] Hoffman S J, Kaplan D I. Human exploration of Mars: the reference mission of the NASA Mars exploration study team[R]. Washington, D.C.: NASA Johnson Space Center, 1997.[152] Drake B G. Reference mission version 3.0: addendum to the human exploration of Mars: the reference mission of the NASA Mars exploration study team, NASA/SP-6107-ADD[R]. Washington, D.C.: NASA, 1998.[153] Tanner L G. Development and characteristics of the Russian/American RD-180 rocket engine[C]//AIAA Joint Propulsion Conference, Liquid Propulsion Short Course. Reston: AIAA, 2002.[154] Peterson V, McKenzie R. Effects of simulated retrorockets on the aerodynamic characteristics of a body of revolution at Mach numbers from 0.25 to 1.90, NASA TN D-1300[R]. Washington, D.C.: NASA, 1962.[155] Korzun A M, Cordell C E, Jr, Braun R D. Comparison of inviscid and viscous aerodynamic predictions of supersonic retropropulsion flowfields, AIAA-2010-5048[R]. Reston: AIAA, 2010.[156] Trumble K A, Kleb W, Carlson J R, et al. An initial assessment of Navier-Stokes codes applied to supersonic retro-propulsion, AIAA-2010-5047[R]. Reston: AIAA, 2010. |
[1] | LYU Junming, LI Fei, LI Qi, CHENG Xiaoli. Modeling of Martian atmospheric high temperature spectra and prediction of non-equilibrium radiative heating [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 626551-626551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341