﻿ 基于联合仿真的飞机空调系统故障影响
 文章快速检索 高级检索

1. 中国民航大学 电子信息与自动化学院, 天津 300300;
2. 中国民航大学 航空工程学院, 天津 300300

Fault impact of aircraft air conditioning system based on joint simulation
SHI Xudong1, JIANG Guijia2, ZHANG Yu1, ZHAO Hongxu1
1. Electronic Information and Automation College, Civil Aviation University of China, Tianjin 300300, China;
2. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
Abstract: The air conditioning system, being an important part of the aircraft, is one of the systems with the highest failure rate, because its performance is highly related to many factors such as the external environment and the operating parameters during flight. Since the air conditioning system faults mainly occur during flight, they are hard to reproduce in ground tests. Therefore, fault impact analyses of the aircraft air conditioning system based on joint simulation is of remarkable significance for the aircraft design verification and ground maintenance. This study first establishes the ram air inlet model, the engine compressor model, the pressure regulation and pre-cooling component model, and the refrigeration component model according to the principle of aircraft air conditioning system. The dynamic change process of the air conditioning system component performance during flight is then simulated based on the AMESim-Simulink joint simulation platform. Finally, typical faults such as precooler leakage, precooler air valve stuck, pressure sensor impact, ram air intake actuator stuck are simulated, reproducing the faults of the air conditioning system during flight and analyzing the change process of air conditioning component performance.
Keywords: aircraft air conditioning system    dynamic process simulation    fault analysis    dynamic flight parameters    AMESim

1 空调系统模型

 图 1 飞机空调系统模型结构示意图 Fig. 1 Structural diagram of air conditioning system model
1.1 冲压空气进气口模型

 ${{T_{{\rm{ram}}}} = {\alpha _{\rm{t}}}{T_{\rm{h}}}[(1 + 0.2M{a^2}) - 1]}$ （1）
 ${{P_{{\rm{ram}}}} = {\alpha _{\rm{p}}}{P_{\rm{h}}}[{{(1 + 0.2M{a^2})}^{3.5}} - 1] + {P_{\rm{h}}}}$ （2）

 ${{T_{\rm{h}}} = 288.15 - 0.006{\kern 1pt} {\kern 1pt} {\kern 1pt} 5h}$ （3）
 ${{P_{\rm{h}}} = {P_0}{{\left( {1 - \frac{h}{{44{\kern 1pt} {\kern 1pt} 330}}} \right)}^{5.7}}}$ （4）

1.2 发动机压气机模型

1) 压气机出口气体温度T和压力P

 ${T = \tau (\lambda )T_2^*}$ （5）
 ${P = \pi (\lambda )P_2^*}$ （6）
 ${T_2^* = T_1^*\left( {1 + \frac{{\pi _{\rm{c}}^{*0.286} - 1}}{{\eta _{\rm{c}}^*}}} \right)}$ （7）
 ${P_2^* = P_1^*\pi _{\rm{c}}^*}$ （8）

2) 压气机进气口总温T1*和进气口总压P1*

 ${T_1^* = T_{\rm{h}}^* = {T_{\rm{h}}}(1 + 0.2M{a^2})}$ （9）
 ${P_1^* = \sigma {\sigma ^*}P_{\rm{h}}^*}$ （10）
 ${P_{\rm{h}}^* = {P_{\rm{h}}}{{(1 + 0.2M{a^2})}^{3.5}}}$ （11）

3) 参数选取

 ${\bar n_0} = \bar n\sqrt {\frac{{288}}{{T_1^*}}}$ （12）

 ${q_{\rm{m}}} = {q_{{\rm{max}}}}{\bar q_{{\rm{m0}}}}\frac{{{P_{\rm{h}}}\sigma }}{{101{\kern 1pt} {\kern 1pt} {\kern 1pt} 325}}\sqrt {\frac{{288}}{{T_1^*}}}$ （13）

 $q(\lambda ) = {q_{\rm{m}}}\frac{{\sqrt {T_2^*} }}{{m{A_{\rm{c}}}P_2^*}}$ （14）

4) 冲波恢复系数σ和进气道恢复系数σ*

1.3 压力调节与预冷组件模型

 图 2 压力调节与预冷组件模型 Fig. 2 Model of pressure regulation and pre-cooling component
1.4 制冷组件模型

 图 3 制冷组件模型 Fig. 3 Model of refrigeration component
2 典型故障仿真

 图 4 飞行任务剖面 Fig. 4 Flight mission profile
2.1 预冷器泄漏故障

 图 5 预冷器泄漏故障仿真 Fig. 5 Simulation of precooler leakage fault

2.2 预冷器空气活门卡死故障

 图 6 预冷器空气活门卡死故障仿真 Fig. 6 Simulation of precooler air valve stuck fault

2.3 压力传感器冲击故障

 图 7 压力传感器冲击故障仿真 Fig. 7 Simulation of pressure sensor impact fault

2.4 冲压空气进气作动筒故障

 图 8 冲压空气进气作动筒卡死故障仿真 Fig. 8 Simulation of ram air intake actuator stuck fault

3 结论

1) 以飞行任务剖面中高度和马赫数为空调系统仿真模型输入参数，可模拟飞行过程中空调系统动态变化过程。

2) 结合系统工作原理及相关文献资料，验证了空调系统模型有效性及仿真结果可靠性。

3) 对空调系统典型故障进行模拟，分析故障时组件性能变化过程，使维修人员了解故障影响情况，有助于飞机空调系统地面维修。

4) 模拟飞行过程中空调系统动态变化过程，可为飞机设计验证提供故障模型。

4 附录A

 ${P_1} = {P_2} \cdot {10^5} - 101{\kern 1pt} {\kern 1pt} {\kern 1pt} 325{\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{Pa}}$ （A1）

 [1] 张絮涵, 吴成云. 民机配平空气系统小偏差化动态建模仿真方法[J]. 航空学报, 2019, 40(11): 122951. ZHANG X H, WU C Y. Small deviation linearization method for dynamic modeling and simulation of trim air system in civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 122951. (in Chinese) Cited By in Cnki | Click to display the text [2] 邱吉超.座舱温度异常事故模拟仿真研究[D].天津: 中国民航大学, 2015: 5-14. QIU J C. The research of simulation about cabin temperature accidents[D]. Tianjin: Civil Aviation University of China, 2015: 5-14(in Chinese). Cited By in Cnki | Click to display the text [3] ANDRADE C, ZAPAROLI E, JU'NIOR J. Numerical analysis of typical aircraft air conditioning air cycle machines[C]//20th International Congress of Mechanical Engineering, 2009. [4] MÄKELÄ L. Model-based fault diagnosis of an aircraft environmental control system[D]. Tampere: Tampere of University Technology, 2016: 37-58. [5] MÜLLER C, SCHOLZ D, GIESE T. Dynamic simulation of innovative aircraft air conditioning[C]//The 1st CEAS European Air and Space Conference, 2007. [6] 吴成云, 汪光文, 李革萍, 等. 民用飞机空调系统仿真分析[J]. 航空动力学报, 2015, 30(9): 2073-2079. WU C Y, WANG G W, LI G P, et al. Simulation analysis of air conditioning system for civil aircraft[J]. Journal of Aeronautics and Dynamics, 2015, 30(9): 2073-2079. (in Chinese) Cited By in Cnki (5) | Click to display the text [7] JONES A B, CHILDS T G, CHEN R, et al. Thermal sensitivity analysis of avionic and environmental control subsystems to variations in flight condition[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 1980. [8] YIN H, SHEN X, HUANG Y, et al. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations[J]. Building Simulation, 2016, 9(4): 459-468. Click to display the text [9] CHEN Y, MA Y, CHEN H. State of charge and state of health estimation for lithiumion battery through dual sliding mode observer based on amesim-simulink co-simulation[J]. Journal of Renewable and Sustainable Energy, 2018, 10(3): 034103. Click to display the text [10] 马麟龙, 李艳军, 王景霖.基于隐变量的旅客机空调系统故障重现研究[C]//全国交通运输领域青年学术会议.上海: 中国航海学会&中国交通运输协会, 2009: 403-406. MA L L, LI Y J, WANG J L. Study on fault recurrence of passenger air conditioning system based on hidden variables[C]//Proceedings of the National Youth Academic Conference on Transportation. Shanghai: China Maritime Society & China Transportation Association, 2009: 403-406(in Chinese). [11] DANEKO A I, KOROCHKOV A N, KOROLEV A Y, et al. Influence of atmospheric parameters on aircraft characteristics[C]//IOP Conference Series: Materials Science and Engineering. Moscow: IOP, 2019: 012006. [12] LI J, CAO X, LIU J, et al. Global airflow field distribution in a cabin mock-up measured via large-scale 2D-PIV[J]. Building and Environment, 2015, 93: 234-244. Click to display the text [13] COOPER J, CAO C, TANG J. L1 adaptive control for aircraft air management system pressure-regulating bleed valve[J]. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(12): 121005. Click to display the text [14] WRIGHT S J, DIXON-HARDY D W, HEGGS P J. Aircraft air conditioning heat exchangers and atmospheric fouling[J]. Thermal Science and Engineering Progress, 2018, 7: 184-202. Click to display the text [15] SHAH S, LIU G, GREATRIX D R. Modelling, simulation, and experimental evaluation of a crossflow heat exchanger for an aircraft environmental control system[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2010, 224(5): 613-623. Click to display the text [16] SANTOS A P P, ANDRADE C R, ZAPAROLI E L. A thermodynamic study of air cycle machine for aeronautical applications[J]. International Journal of Thermodynamics, 2014, 17(3): 117-125. Click to display the text [17] 刘震宇, 马小兵, 洪东跑, 等. 基于飞行剖面的作战飞机任务可靠性评估方法[J]. 北京航空航天大学学报, 2012, 38(1): 59-63. LIU Z Y, MA X B, HONG D P. Mission reliability assessment for battle-plane based on flight profile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1): 59-63. (in Chinese) [18] JONQUERES M A, ARAKI R. Low-pressure bleed air aircraft environmental control system: US 9, 580, 180 B2[P]. 2017-02-28. [19] 张铭钧, 吴娟, 王玉甲. 水下机器人多传感器并发故障检测方法[J]. 机器人, 2010, 32(3): 298-305. ZHANG M J, WU J, WANG Y J. A method of multi-sensor simultaneous faults detection for autonomous underwater vehicle[J]. Robot, 2010, 32(3): 298-305. (in Chinese) [20] 王辉, 徐坤. 飞机空调冷却子系统故障预测[J]. 机械设计, 2019, 36(2): 73-81. WANG H, XU K. Research on failure forecasting of the aircraft's air-conditioning cooling subsystem[J]. Journal of Machine Design, 2019, 36(2): 73-81. (in Chinese) Cited By in Cnki (2) | Click to display the text [21] 任明波, 王娟, 李荣军, 等. 大型飞机座舱温度控制系统控制律设计[J]. 航空学报, 2017, 38(S1): 721501. REN M B, WANG J, LI R J, et al. Control law design for temperature control system of large scale aircraft cabin[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721501. (in Chinese) Cited By in Cnki | Click to display the text
http://dx.doi.org/10.7527/S1000-6893.2020.23647

0

文章信息

SHI Xudong, JIANG Guijia, ZHANG Yu, ZHAO Hongxu

Fault impact of aircraft air conditioning system based on joint simulation

Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323647.
http://dx.doi.org/10.7527/S1000-6893.2020.23647