﻿ 航空发动机主轴滚子轴承非典型失效机理
 文章快速检索 高级检索

1. 河南科技大学 机电工程学院, 洛阳 471003;
2. 河南科技大学 高端轴承摩擦学技术与应用国家地方联合工程实验室, 洛阳 471003;
3. 辽宁重大装备协同创新中心, 大连 116024;
4. 北京动力机械研究所, 北京 100074

Atypical failure mechanism of aero-engine main shaft roller bearing
ZHENG Jintao1, DENG Sier1,2,3, ZHANG Wenhu1, DANG Xiaoyong4
1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China;
2. National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471003, China;
3. Collaborative Innovation Center of Major Machine Manufacturing in Liaoning, Dalian 116024, China;
4. Beijing Power Machinery Institute, Beijing 100074, China
Abstract: Based on the dynamic analysis of rolling bearings, this paper presents dynamics differential equations of high-speed cylindrical roller bearing, considering the roller dynamic unbalance and the collision and friction between the roller and the rib, aiming at the atypical failure of aero-engine cylindrical roller bearing.The problem is solved by the GSTIFF (Gear stiff) integer algorithm with variable step. And the influence of the bearing condition parameters and the structural parameters on the maximum skew angle of the dynamic unbalanced roller and maximum collision force between the roller and the rib are analyzed. The results show that the maximum skew angle of the roller and the maximum collision force between the roller and the rib increase with the roller dynamic unbalance and the inner ring rotation speed, showing no obvious correlation with the radial load. The smaller axial clearance can effectively suppress the roller skew, but it will increase the impact force between the roller and the rib. And a reasonable axial clearance range makes the collision force between the roller and the rib small when the roller skew angle is not excessive. The smaller cage pocket circumferential clearance and the rib negative back angle and the larger roller ball end face radius can reduce the maximum skew angle of the roller and the maximum collision force between the roller and the rib.
Keywords: cylindrical roller bearing    dynamics    dynamic unbalance    collision    atypical failure

1 圆柱滚子轴承非典型失效表征

 图 1 某航空发动机轴承失效 Fig. 1 An aero-engine bearing failure
2 高速圆柱滚子轴承动力学模型 2.1 圆柱滚子轴承系统坐标系

 图 2 圆柱滚子轴承系统坐标系 Fig. 2 Coordinate systems of cylindrical roller bearing

1) 惯性坐标系(O; X, Y, Z)，原点O位于外圈几何中心，X轴与外圈轴线重合，YOZ平面与外圈径向平面平行。轴承运转过程中外圈固定，即惯性坐标系在空间中固定。

2) 内圈质心坐标系(oi; xi, yi, zi)，原点oi与内圈质心重合，xi轴与惯性坐标系X轴平行，yioizi平面与内圈径向平面平行，坐标系随内圈移动和转动。

3) 保持架质心坐标系(oc; xc, yc, zc)，原点oc与保持架质心重合，xc轴与惯性坐标系X轴平行，ycoczc平面与保持架径向平面平行，坐标系随保持架移动和转动。

4) 保持架兜孔坐标系(opj; xpj, ypj, zpj)，原点opj与保持架第j个兜孔中心重合，xpj轴与惯性坐标系X轴平行，ypjopjzpj平面与保持架径向平面平行，ypj轴过保持架质心，坐标系随保持架移动和转动。

5) 滚子中心坐标系(orj; xrj, yrj, zrj)，原点orj与第j个滚子几何中心重合，xrj轴沿第j个滚子轴线方向，yrjorjzrj平面与第j个滚子径向平面平行，yrj轴过外圈质心，坐标系随滚子移动和转动。

6) 滚子参考坐标系(orrj; xrrj, yrrj, zrrj)，原点orrj与第j个滚子几何中心重合，xrrj轴与惯性坐标系X轴平行，yrrjorrjzrrj平面与第j个滚子径向平面平行，yrrj轴过外圈质心，坐标系随滚子移动和转动。

2.2 滚子与挡边间作用力与力矩方程组

 图 3 滚子和挡边接触与几何关系 Fig. 3 Contact and geometric relationship between roller and rib

Lp为接触点所在的与xrjorjzrj面平行的平面内的滚子长度，其表达式为

Caf为负背角θf引起的单侧轴向间隙：

XrK为滚子轴向位移产生的与左右挡边间的间隙增量：

Reff为接触点当量曲率半径：

ΓΠ分别为第一类和第二类完全椭圆积分：

FG为润滑剂对滚子端面产生的拖动力:

2.3 滚子动力学微分方程组

 图 4 第j个滚子动不平衡量原理图 Fig. 4 Schematic diagram of the j th roller dynamic unbalance

 图 5 第j个滚子受力示意图 Fig. 5 Schematic diagram of forces acting on the j th roller

2.4 保持架动力学微分方程组

 图 6 保持架受力示意图 Fig. 6 Schematic diagram of cage forces

2.5 内圈动力学微分方程组

3 结果分析

 参数 数值 轴承内径/mm 52.322 轴承外径/mm 75.692 轴承宽度/mm 16 滚子个数 10 滚子直径/mm 6 滚子全长/mm 6 保持架引导方式 内圈引导

3.1 轴承工况参数对动不平衡滚子最大歪斜角和滚子与内圈挡边最大碰撞力的影响

 图 7 动不平衡滚子最大歪斜角和滚子与挡边最大碰撞力随径向载荷变化 Fig. 7 Maximum skew angle of unbalance roller and maximum collision force between roller and rib change with radial load
 图 8 动不平衡滚子最大歪斜角和滚子与挡边最大碰撞力随内圈转速变化 Fig. 8 Maximum skew angle of unbalance roller and maximum collision force between roller and rib change with rotation speed
3.1.1 径向载荷

3.1.2 内圈转速

3.2 轴承结构参数对动不平衡滚子最大歪斜角和滚子与内圈挡边最大碰撞力的影响

 图 9 动不平衡滚子最大歪斜角和滚子与挡边最大碰撞力随轴承轴向游隙变化 Fig. 9 Maximum skew angle of unbalance roller and maximum collision force between roller and rib change with axial clearance
 图 10 动不平衡滚子最大歪斜角和滚子与挡边最大碰撞力随保持架兜孔周向游隙变化 Fig. 10 Maximum skew angle of unbalance roller and maximum collision force between roller and rib change with cage pocket circumferential clearance
 图 11 动不平衡滚子最大歪斜角和滚子与挡边最大碰撞力随内圈挡边负背角变化 Fig. 11 Maximum skew angle of unbalance roller and maximum collision force between roller and the rib change with negative back angle of inner ring rib
 图 12 动不平衡滚子最大歪斜角和滚子与挡边最大碰撞力随滚子球端面半径变化 Fig. 12 Maximum skew angle of unbalance roller and maximum collision force between roller and rib change with radius of roller end face
3.2.1 轴向游隙

3.2.2 保持架兜孔周向游隙

3.2.3 内圈挡边负背角

3.2.4 滚子球端面半径

4 结论

1) 较大的滚子动不平衡量和内圈挡边轴向游隙超差是引起航发轴承非典型失效的主要原因。

2) 滚子最大歪斜角和滚子与挡边最大碰撞力随滚子动不平衡量及轴承内圈转速增加而增大，与径向载荷间未表现出明显的相关性。

3) 滚子最大歪斜角随轴承轴向游隙增加而增大，滚子与挡边最大碰撞力随轴承轴向游隙增加而减小。在轴向游隙较小时，滚子动不平衡量对歪斜角与碰撞力影响较为显著。存在一个合理的轴承轴向游隙范围，本文研究的轴承轴向游隙为0.023~0.027 mm，使得在滚子歪斜角不会过大的情况下滚子与挡边碰撞力较小。

4) 滚子最大歪斜角和滚子与挡边最大碰撞力均随保持架兜孔周向游隙增加而增大。在保持架兜孔周向游隙较小时，滚子动不平衡量对歪斜角影响较为显著。考虑滚子动不平衡，应适当选用较小的保持架兜孔周向游隙。

5) 滚子最大歪斜角和滚子与挡边最大碰撞力均随内圈挡边负背角增加而增大，随滚子球端面半径增加而减小。在滚子球端面半径较小时，滚子动不平衡量对歪斜角与碰撞力影响较为显著。考虑滚子动不平衡，应适当选用较小的挡边负背角和较大的滚子球端面半径。

 [1] 李锦标, 吴林丰. 高速滚子轴承的动力学分析[J]. 航空学报, 1992, 13(12): 625-632. LI J B, WU L F. Dynamic analysis of high-speed roller bearings[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(12): 625-632. (in Chinese) Cited By in Cnki (50) | Click to display the text [2] LEBLANC A, NELIAS D, DEFAYE C. Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings[J]. Journal of Sound and Vibration, 2009, 325(1-2): 145-160. Click to display the text [3] WANG Y S, JIN N N, ZHU H F. Analysis on dynamic characteristics of high speed cylindrical roller bearing[J]. Key Engineering Materials, 2011, 480-481: 980-985. Click to display the text [4] GAO W J, NELIAS D, LYU Y G, et al. Numerical investigations on drag coefficient of circular cylinder with two free ends in roller bearings[J]. Tribology International, 2018, 123: 43-49. Click to display the text [5] 张志华, 周彦伟, 邓四二, 等. 高速圆柱滚子轴承动力学及运动仿真[J]. 轴承, 2006(1): 1-3. ZHANG Z H, ZHOU Y W, DENG S E, et al. Dynamics and motion simulation of high speed cylindrical roller bearings[J]. Bearing, 2006(1): 1-3. (in Chinese) Cited By in Cnki (27) | Click to display the text [6] 邓四二, 顾金芳, 崔永存, 等. 高速圆柱滚子轴承保持架动力学特性分析[J]. 航空动力学报, 2014, 29(1): 207-215. DENG S E, GU J F, CUI Y C, et al. Analysis on dynamic characteristics of cage in high-speed cylindrical bearing[J]. Journal of Aerospace Power, 2014, 29(1): 207-215. (in Chinese) Cited By in Cnki (15) | Click to display the text [7] CUI Y C, DENG S E, ZHENG W H, et al. The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics[J]. Mechanism & Machine Theory, 2017, 118: 65-83. Click to display the text [8] CUI Y C, DENG S E, NIU R J, et al. Vibration effect analysis of roller dynamic unbalance on the cage of high-speed cylindrical roller bearing[J]. Journal of Sound and Vibration, 2018, 434: 314-335. Click to display the text [9] 孙雪, 邓四二, 陈国定, 等. 弹性支承下的高速圆柱滚子轴承振动特性研究[J]. 振动与冲击, 2017, 36(18): 20-28. SUN X, DENG S E, CHEN G D, et al. Vibration characteristics analysis of high-speed cylindrical roller bearings with elastic supports[J]. Journal of Vibration and Shock, 2017, 36(18): 20-28. (in Chinese) Cited By in Cnki | Click to display the text [10] 孙雪, 邓四二, 陈国定, 等. 弹性支承下圆柱滚子轴承保持架稳定性分析[J]. 航空动力学报, 2018, 33(2): 487-496. SUN X, DENG S E, CHEN G D, et al. Analysis of cage's stability in a cylindrical roller bearing with elastic supp-ort[J]. Journal of Aerospace Power, 2018, 33(2): 487-496. (in Chinese) Cited By in Cnki | Click to display the text [11] 崔立, 王黎钦, 郑德志, 等. 航空发动机高速滚子轴承动态特性分析[J]. 航空学报, 2008, 29(2): 492-498. CUI L, WANG L Q, ZHENG D Z, et al. Analysis on dynamic characteristics of aero-engine high-speed roller bearings[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 492-498. (in Chinese) Cited By in Cnki (38) | Click to display the text [12] 薛峥, 汪久根, RYMUZA Z, 等. 圆柱滚子轴承的动力学分析[J]. 轴承, 2009(7): 1-6. XUE Z, WANG J G, RYMUZA Z, et al. Dynamic analysis on cylindrical roller bearings[J]. Bearing, 2009(7): 1-6. (in Chinese) Cited By in Cnki (23) | Click to display the text [13] 韩勤锴, 李兴林, 闫国斌, 等. 变载偏斜圆柱滚子轴承打滑动力学分析[J]. 机械工程学报, 2017, 53(9): 58-65. HAN Q K, LI X L, YAN G B, et al. Dynamic skidding behavior of skew cylindrical roller bearings under time-variable loads[J]. Journal of Mechanical Engineering, 2017, 53(9): 58-65. (in Chinese) Cited By in Cnki | Click to display the text [14] 曹伟, 王家序, 蒲伟, 等. 加速工况下圆柱滚子轴承运动特性[J]. 中南大学学报(自然科学版), 2018, 49(3): 583-591. CAO W, WANG J X, PU W, et al. Kinetic characteristics of cylindrical roller bearing during acceleration[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 583-591. (in Chinese) Cited By in Cnki | Click to display the text [15] LIU X L, BAI X R, CUI J L, et al. Thermal elastohydrodynamic lubrication analysis for tilted and skewed rollers in cylindrical roller bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2015, 230(4): 428-441. Click to display the text [16] ZHANG W H, DENG S E, CHENG G D, et al. Study on the impact of roller convexity excursion of high-speed cylindrical roller bearing on roller's dynamic characterist-ics[J]. Mechanism & Machine Theory, 2016, 103: 21-39. [17] PATRA P, SARAN V H, HARSHA S P, et al. Non-linear dynamic response analysis of cylindrical roller bearings due to rotational speed[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2018, 1-12. Click to display the text [18] 赵燕, 毕明龙, 石东丹. 基于抑制滚子歪斜的高速圆柱滚子轴承设计[J]. 轴承, 2018(12): 14-16. ZHAO Y, BI M L, SHI D D. Design of high speed cylindrical roller bearings based on control of roller skew[J]. Bearing, 2018(12): 14-16. (in Chinese) Cited By in Cnki | Click to display the text [19] KLECKNER R J, PIRVICS J, CASTELLI V. High speed cylindrical rolling element bearing analysis "CYBEAN"-analytic formulation[J]. Journal of Lubrication Technology, 1980, 102(3): 380-388. Click to display the text [20] 邓四二, 贾群义, 薛进学. 滚动轴承设计原理[M]. 二版. 北京: 中国标准出版社, 2014: 258-260. DENG S E, JIA Q Y, XUE J X. Design theory of rolling bearings [M]. 2nd ed. Beijing: Standards Press of China, 2014: 258-260. (in Chinese) [21] 杨咸启. 接触力学理论与滚动轴承设计分析[M]. 武汉: 华中科技大学出版社, 2018: 268-269. YANG X Q. Contact mechanics theory and design analysis of rolling bearings[M]. Wuhan: Huazhong University of Science and Technology Press, 2018: 268-269. (in Chinese)
http://dx.doi.org/10.7527/S1000-6893.2019.23347

0

#### 文章信息

ZHENG Jintao, DENG Sier, ZHANG Wenhu, DANG Xiaoyong

Atypical failure mechanism of aero-engine main shaft roller bearing

Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 423347.
http://dx.doi.org/10.7527/S1000-6893.2019.23347