文章快速检索  
  高级检索
基于流形结构重建的多目标气动优化算法
宋超, 李伟斌, 周铸, 刘红阳, 蓝庆生     
中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000
摘要: 在多目标优化中,Pareto解集是一个分段连续的k维流形,这一规律被传统进化算法所忽略。本文提出了一种基于流形结构重建的多目标优化算法,首先利用流形结构重建方法完成解集分布从目标空间到设计空间的映射,建立解集的概率分布,并在目标空间中扩展流形结构,从而借助解集在目标空间的推进来指导优化算法的快速演化。数值算例表明本文算法对于具有不同特征的Pareto前沿具有很好的适应性,能够极大提高算法的收敛效率。多目标气动优化算例验证,本文算法相比于常规多目标进化算法能够减少约80%的计算量,极大程度缩短了气动设计的周期。
关键词: 流形    气动设计    分布估计    多目标    Pareto解集    
Multi-objective aerodynamic optimization algorithm based on manifold reconstruction
SONG Chao, LI Weibin, ZHOU Zhu, LIU Hongyang, LAN Qingsheng     
Computional Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract: The Pareto set of a multi-objective design problem is a piecewise continuous k-dimensional manifold, and this fact has always been neglected by traditional multi-objective genetic algorithms. A multi-objective optimization algorithm based on manifold reconstruction is proposed in this paper. The manifold reconstruction algorithm is employed for building the mapping between the design space and the objective space, and the probability distribution of the solution set is built. Then the manifold structure in the objective space is extended, enabling the advancing of the solution set in the objective space to optimize the algorithm. The analytic design cases show that the proposed algorithm is adaptive to problems with diverse Pareto structure features, and the optimization efficiency is improved significantly. The proposed algorithm is also verified by multi-objective aerodynamic design problems. The results demonstrated that about 80% computational cost can be saved compared with traditional multi-objective genetic algorithms. The proposed algorithm has the ability to significantly shorten the aerodynamic design cycle.
Keywords: manifold    aerodynamic design    estimation of distribution    multi-objective    Pareto set    

飞行器气动外形的优化设计必须考虑多个目标,例如,民用飞机需要综合考虑巡航升阻比、阻力发散、力矩特性以及抖振边界等问题[1],直升机旋翼需要在悬停、前飞和机动等多种运动状态下有优良的高速超临界性能、低速大迎角气动性能,以及接近于零的力矩系数[2]。然而,多个目标往往是互相矛盾的,一个目标的提升可能是以另一个目标的妥协为代价[3],因此需要一种全面衡量所有设计目标的系统设计方法。

Fonseca和Fleming[4]利用Pareto最优解集概念,提出了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。随后,Srinivas和Deb[5]提出了非劣分层遗传算法(Non-dominated Sorting Genetic Algorithm, NSGA)。该算法基于非支配排序思想设计,能够有效解决多目标设计问题,得到均匀分布的解。Deb等对NSGA进行改进,并提出了基于精英保留策略的非劣排序进化算法(NSGA2)[6],与NSGA相比,NSGA2的计算复杂度有所降低,并且种群的分布更加均匀。此类传统的多目标进化算法已经广泛应用于飞行器的多目标优化设计中[7-11],并取得了一定的成果。然而,演化多目标优化算法具有一些固有缺点,比如当种群接近收敛时,盲目交叉、变异操作会使本已近似收敛的种群偏离实际的Pareto解集(Pareto Set, PS),给算法性能造成不良影响[12]

分布估计算法(Estimation of Distribution Algorithm, EDA)[13]通过建立解集分布的概率模型,然后在该模型上随机产生新的子代个体,从而实现种群进化,避免了传统的交叉变异操作。EDA凭借其高效优化思想,已经成了多目标优化领域的研究热点之一[14-15]。Zhang等[16]利用设计空间的Pareto解集是一个分段连续的k维流形(k=m-1,m为设计目标个数)这一规律[17],发展了基于规则模型的多目标EDA。如何建立解集分布的概率模型,是EDA的核心问题。一些建模方法,如主成分分析(Principal Component Analysis, PCA)[18]等需要对种群进行聚类,过程复杂且准确度不高。詹炜[19]利用局部线性嵌入(Locally Linear Embedding, LLE)方法发掘Pareto前沿的流形结构,进行了卫星星座的多目标优化设计,取得了较好的效果。Yang[20]等采用LLE和免疫克隆算法来发掘Pareto前沿结构。目前,基于流形结构的EDA在气动多目标优化问题中的应用还在初步研究阶段。本文提出一种利用流形结构重建的分布估计算法,将其用于多目标气动优化问题,可显著提高优化效率,实现多目标气动优化问题的高效求解。

1 算法介绍

分布估计算法首先建立一个描述解集分布的概率模型,在此基础上对概率模型进行采样,得到新的解集分布,如此反复进行,实现种群的进化,直到终止条件[21]。本文采用流形结构重建的方法来建立概率模型,并对目标空间的Pareto前沿进行扩展以实现概率模型的采样,实现了基于流形结构重建的多目标优化算法。

1.1 流形结构重建算法

优化算法迭代过程中的种群逐渐形成清晰的Pareto前沿,高维设计空间中的Pareto解集存在一定的相关性和规律性。根据卡罗需-库恩-塔克条件(Karush-Kuhn-Tucker condition,KKT)[16],设计空间的Pareto解集是一个分段连续的低维流形。若获得低维流形表示,可挖掘出其中蕴含的信息,进而指导优化算法的演化。另一方面,由于低维流形的简单性,一定程度上解决了高维设计变量带来的诸多问题,如维数灾难。

已有的利用流形结构的多目标优化算法,借助了流形学习算法来发掘其流形结构。大多数流形学习算法,如前面提到的PCA、LLE等方法,都只是将高维空间中的样本数据点投影到低维流形上,投影关系并没有具体的解析函数表达式。具体地,针对气动优化问题,虽然可以采用流形学习算法将设计空间中的样本点投影到低维的流形空间,但在低维流形空间中的点不具有物理意义,直接利用这些信息是困难的。即低维流形空间中的任意坐标不能显式地对应于设计空间中的点,因此也就无从求得对应的气动力。

值得注意的是,从设计空间到目标空间的映射本身,即气动性能分析过程就是一个降维的过程。目标空间具有直接的物理意义,能够很方便的利用这些信息。关键问题在于如何利用流形分布规律,重新构建目标空间到设计空间的映射关系。本文采用了文献[22]中提出的一种流形结构重建算法。设Sk为嵌入在n维空间Dn中的k维流形,其中kn,{xi}i=1NDn上的N个样本点,{yi}i=1NSk上的N个样本点。xy之间的关系为:y=f(x), x=g(y)。根据泰勒展开定理,yi邻域内任意一点yDn中的坐标x可表示为

$\boldsymbol{x}=g(\boldsymbol{y})=\boldsymbol{x}_{i}+\boldsymbol{J}\left(\boldsymbol{y}_{i}\right)\left(\boldsymbol{y}-\boldsymbol{y}_{i}\right)+\boldsymbol{R}\left(\boldsymbol{y}, \boldsymbol{y}_{i}\right) $ (1)
 

式中:J(yi)为函数g(y)在点yi的雅克比矩阵;R(y, yi)为余项。略去余项并假设xiz个邻域点,则有

$\left\{\begin{array}{l}\boldsymbol{X}_{i} \approx \boldsymbol{J}\left(\boldsymbol{y}_{i}\right) \boldsymbol{Y}_{i} \\ \boldsymbol{X}_{i}=\left[\boldsymbol{x}_{i, 1}-\boldsymbol{x}_{i}, \boldsymbol{x}_{i, 2}-\boldsymbol{x}_{i}, \cdots, \boldsymbol{x}_{i, z}-\boldsymbol{x}_{i}\right] \\ \boldsymbol{Y}_{i}=\left[\boldsymbol{y}_{i, 1}-\boldsymbol{y}_{i}, \boldsymbol{y}_{i, 2}-\boldsymbol{y}_{i}, \cdots, \boldsymbol{y}_{i, z}-\boldsymbol{y}_{i}\right]\end{array}\right. $ (2)
 
$\boldsymbol{J}\left(\boldsymbol{y}_{i}\right) \approx\left(\boldsymbol{X}_{i} \boldsymbol{Y}_{i}^{\mathrm{T}}\right)\left(\boldsymbol{Y}_{i} \boldsymbol{Y}_{i}^{\mathrm{T}}\right)^{-1} $ (3)
 

至此得到了点yi的雅克比矩阵J(yi)。

对于流形空间Sk中的任意一点y,解出其在高维空间Dn中坐标x的过程称为流形结构重建。对应于气动优化问题,即给定目标空间中的一点,求其设计空间中的坐标。流形结构重建的具体步骤如下:

步骤1  从{yi}i=1N中找出距离y最近的ys

步骤2  找出ys在高维空间Dn中的坐标xs, xs的邻域点xs, 1, xs, 2, …,xs, z以及这些邻域点在Sk中的坐标ys, 1, ys, 2, …,ys, z

步骤3  构建矩阵Xs=[xs, 1-xs, xs, 2-xs, …,xs, z-xs]及Ys=[ys, 1-ys, ys, 2-ys, …,ys, z-ys],计算矩阵Qs=(XsYsT)(YsYsT)-1

步骤4  点yDn中的坐标xxs+Qs(y-ys)。

值得注意的是,以上流形结构重建算法建立的高维流形空间与对应的低维表示空间的显式映射关系,是基于流形结构的连续性、局部等距性等一系列假设的,更详细的约束条件及过程推导见文献[22]。

1.2 目标空间Pareto前沿扩展

利用1.1节的流形结构重建算法,可以得到低维目标空间到高维设计空间的映射关系。通过在目标空间Pareto前沿的扩展就可以得到对应的设计空间的解集分布,用于指导算法进化。生成新个体的算法如图 1所示。设ζ为流形结构,将种群个体看作是一个随机变量ξ的独立观测量,且ε是一个符合正态分布的随机噪声向量。种群个体在ζ附近随机分布为

图 1 流形结构扩展示意图 Fig. 1 Illustration of manifold structure extension
$\mathit{\boldsymbol{\xi }} = \mathit{\boldsymbol{\zeta }} + \mathit{\boldsymbol{\varepsilon }} $ (4)
 

这一方法也被Zhang等[16]、詹炜[19]采用。本文直接在目标空间对Pareto前沿进行“扩展”,一方面极大简化了算法,另一方面目标函数空间中的流形结构有清晰的物理意义,能够指导算法演化。

一般地,假设希望达到比当前最优Pareto前沿上目标函数更小的值,随机向量ε取值为

${\mathit{\boldsymbol{\varepsilon }}^i} = - N\left( {{\mathit{\boldsymbol{y}}^i}} \right)\left( {\mathit{\boldsymbol{y}}_{\min }^i - \kappa \left| {\mathit{\boldsymbol{y}}_{\min }^i} \right|} \right) $ (5)
 

式中:上标i表示向量的第i个分量;N(yi)为均值为1、方差为1的正态分布函数;κ为推进因子。

1.3 基于流形结构重建的多目标优化流程

本文采用流形结构重建算法估计解集的概率分布,利用Pareto前沿的流形分布规律,用于指导多目标优化算法的演化,以下称该算法为MR-EDA。记算法种群为

${\bf{Pop}}(t) = \left[ {{\mathit{\boldsymbol{x}}^1}, {\mathit{\boldsymbol{x}}^2}, \cdots , {\mathit{\boldsymbol{x}}^N}} \right] $ (6)
 

式中:t为当前迭代步数;N为种群大小。个体适应度值F(x)=[f1(x), f2(x), …,fm(x)]Τm为目标个数。采用MR-EDA法的优化流程如图 2所示,具体如下:

图 2 MR-EDA优化流程图 Fig. 2 Flowchart of MR-EDA optimazation

步骤1  产生初始种群Pop(0),计算种群中的每个个体的适应度值F(x)。

步骤2  对当前种群进行非支配排序,选取前N1个个体,组成新的种群Q(t)。针对Q(t),利用1.2节所述的流形结构重建算法,生成N2个个体,形成种群P(t)。其中N=N1+N2

步骤3  若满足停止条件,迭代结束。否则,Pop(t)=Q(t)+P(t)(t=t+1),返回步骤1继续进行迭代。

2 解析函数测试算例

ZDT测试集是目前广泛采用的两目标测试函数。本文选取了ZDT1、ZDT2、ZDT3作为测试函数,其中ZDT1的最优前沿为凸函数,ZDT2的最优前沿为凹函数,ZDT3的最优前沿为分段凹函数。测试函数的定义如表 1所示,其中自变量维数m均取为30。

表 1 测试函数定义 Table 1 Definitions of test functions
测试函数 定义 真实Pareto最优前沿
ZDT1 g(x)=1+9$\sum\limits_{i=2}^{m}$xi/(m-1)
F1(x)=x1
F2(x)=g(x)$(1 - \sqrt {{\mathit{\boldsymbol{x}}^1}/g(\mathit{\boldsymbol{x}})})$
xi∈[0, 1] y=1-$\sqrt {{\mathit{\boldsymbol{x}}^1}} $
ZDT2 g(x)=1+9$\sum\limits_{i=2}^{m}$xi/(m-1)
F1(x)=x1
F2(x)=g(x)$\left({1 - {{\left({\frac{{{\mathit{\boldsymbol{x}}^1}}}{{g(\mathit{\boldsymbol{x}})}}} \right)}^2}} \right)$
xi∈[0, 1] y=1-(x1)2
ZDT3 g(x)=1+9$\sum\limits_{i=2}^{m}$xi/(m-1)
F1(x)=x1
F2(x)=g(x)$\left({1 - \sqrt {\frac{{{\mathit{\boldsymbol{x}}^1}}}{{g(\mathit{\boldsymbol{x}})}}} - \frac{{{\mathit{\boldsymbol{x}}^1}}}{{g(\mathit{\boldsymbol{x}})}}\sin \left({10{\rm{ \mathit{ π} }}{\mathit{\boldsymbol{x}}^1}} \right)} \right)$
xi∈[0, 1] y=1-$\sqrt {{\mathit{\boldsymbol{x}}^1}} $-x1sin(10πx1)
注:上标1表示矢量的第1个维度的值。

为评价算法性能,引入IGD(Inverted Generational Distance)指标[23]。该指标首先需要均匀分布在真实Pareto最优前沿上的点集S*,设S为优化算法得到的Pareto非支配解集,则IGD定义为

式中:d(v, S)为点v到解集P所有解中的最小距离;|S*|为样本集S*中的点数。IGD指标能同时度量收敛性和多样性。越小的IGD值表示优化算法得到的非支配解越逼近真实最优解,同时非支配解的均匀性也越好。

本文分别采用MR-EDA与NSGA2进行解析函数的优化测试。设计变量数目为30,初始种群数目为100,最大迭代步数设为200。NSGA2的交叉概率为0.8,变异概率为0.3。MR-EDA中流形重构种群数目N1=N/2。推进因子κ的取值过小可能影响收敛效率,取值过大则不满足流形重构的条件,经测试κ=0.05取得较好的效果。因此,本文算例中推进因子κ均取为0.05。图 3(a)给出了测试函数ZDT1的优化结果,分别给出了ZDT1函数的真实最优Pareto前沿,NSGA2及本文算法MR-EDA得到的最优Pareto前沿。如图 3(a)所示,本文所提算法优化得到的Pareto最优前沿与真实前沿几乎重合,并且在Pareto解的分布更加均匀。经过相同迭代步数的NSGA2得到的最优Pareto前沿与真实Pareto前沿还有一定的距离。图 3(b)给出了ZDT2测试函数的优化结果。类似于ZDT1优化结果,本文算法得到的ZDT2函数最优Pareto前沿相比NSGA2收敛更好,前者基本与真实Pareto前沿重合。图 3(c)为ZDT3函数的测试结果,经过200步的迭代,本文算法及NSGA2均未收敛到真实Pareto前沿,但本文算法明显地得到了更好的Pareto解集。

图 3 3种测试优化算例的Pareto前沿 Fig. 3 Pareto fronts obtained by three test optimization examples

图 4给出了3种测试优化算例的IGD指标收敛过程。从图中可以看出,本文算法的IGD指标收敛更快,对于ZDT1与ZDT2,其IGD分别在约150步和110步时几乎收敛到0。对于ZDT3,本文算法约50步迭代后的IGD值已经跟NS-GA2迭代200步得到的值相当。对于具有不同特征的Pareto前沿的解析函数,优化结果表明本文算法的优化效率明显高于NSGA2。

图 4 3种测试优化算例的IGD指标收敛过程 Fig. 4 Convergence histories of IGD obtained by three test optimization examples
3 气动优化算例

选择低雷诺数翼型SD7032为基准进行多目标气动优化设计。翼型参数化采用CST (Class function/Shape function Transformation)方法[24],翼型上下表面型函数阶数均取为5,类函数指数N1=0.5,N2=1.0,设计变量数目为12。以SD7032的CST参数为基准,设计变量变化范围为±30%。分别考虑2目标和3目标的翼型优化设计问题,其中2目标优化设计问题定义为

施加力矩系数约束为-0.12≤Cm1≤-0.09,-0.12≤Cm2≤-0.09,并约束翼型最大厚度tmax≥9.0%,其中下标1、2分别表示设计状态1与设计状态2的气动参数。约束采用罚函数方式处理。3目标优化问题在2目标优化问题基础上增加1个设计点,定义为

采用与2目标问题相同方式处理约束。翼型气动性能求解采用XFOIL,XFOIL在低速低雷诺数范围内能较精确高效预测翼型气动特性[25]

同样分别利用MR-EDA和NSGA2算法进行优化。对于2目标优化,NSGA2初始种群数目N=100,最大迭代步数设为100,交叉概率0.8,变异概率0.3。MR-EDA中流形重构种群数目N1=N/2,其余参数与NSGA2一致。3目标优化问题种群数目增加为300,其余参数不变。

图 5给出了低雷诺数翼型的2目标优化Pareto前沿的收敛过程,其中图 5(a)图 5(b)分别给出了MR-EDA、NSGA2的Pareto前沿收敛过程,图中的迭代步数均为5、10、20、100。从图中可以看出,仅迭代5步,本文所提MR-EDA得到的Pareto前沿已经形成了较为规则的分布,在之后的迭代中,Pareto前沿分布更加趋向于规则分布。迭代20步与迭代100步的Pareto前沿基本重合,说明了该算法具有很高的收敛效率。作为对比,NSGA2收敛更为缓慢,在相同的迭代步数下,Pareto前沿收敛性稍差。尽管本文算法最大迭代步数设置为100,但实际上由于算法的收敛效率高,在经过约20步的迭代后,Pareto前沿几乎与NSGA2迭代100步得到的最优Pareto前沿几乎重合。

图 5 2目标翼型优化Pareto前沿收敛过程 Fig. 5 Convergence histories of Pareto front of 2-objective airfoil optimization

图 6(a)给出了3目标优化迭代20步时的Pareto前沿。从图中可以明显看出,MR-EDA的收敛速度明显快于NSGA2。迭代100步得到的Pareto前沿在图 6(b)中给出,2种算法都已经收敛到相当的水平。分别对比图 6(a)图 6(b)中的Pareto前沿,对于MR-EDA迭代20步的解与迭代100步的解已经十分接近,即本文算法减少了约80%的计算量,说明了本文算法具有高效收敛的特点。

图 6 3目标翼型优化得到的最优Pareto前沿 Fig. 6 Pareto front of 3-objective optimal airfoil design problems

选取3目标优化最优Pareto解集中的一个翼型进行气动性能分析,所选翼型在雷诺数为3.6×105时的功率因子约为117。图 7给出了该优化翼型与SD7032翼型的形状。优化后的翼型前缘半径减小,前半部分厚度减小而后半部分厚度增大,上表面曲率过渡更平缓。优化翼型厚度约为9.13%,在约束范围内。图 8给出了该翼型在设计点2处的压力分布,并与SD7032翼型的压力分布进行了比较。从图中看出,优化后的翼型转捩点后移,在后半段负压幅值更高,这就使得升力增加,同时低头力矩增大。

图 7 3目标优化得到的Pareto解集中的翼型形状与SD7032翼型 Fig. 7 Optimal airfoil shape in Pereto set obtained by 3-objective design and SD7032 airfoil
图 8 3目标优化得到的Pareto最优解压力分布与SD7032翼型压力分布(Re=3.6×105, α=4°) Fig. 8 Pressure coefficient optimal airfoil in Pereto set obtained by 3-objective optimal and SD7032 airfoil (Re=3.6×105, α=4°)

表 2给出了优化翼型与SD7032在3个设计点的气动性能。从表中看出,优化翼型的升力系数在3个设计点下都有所提升,增加约8%,同时阻力均有所减小。功率因子在3个设计点分别增加了约20.2%、31.7%、27.8%,优化效果明显。力矩系数的在设计点均明显减小,但未超出约束范围。图 9给出了该优化翼型与SD7032翼型功率因子随雷诺数变化的关系。从图中可以看出在整个优化区间内,功率因子均有明显提升,这就保证了翼型性能在一定速度范围内平缓过渡。

表 2 优化翼型与SD7032气动性能比较 Table 2 Aerodynamic performance of optimal airfoil and SD7032 airfoil
设计点 翼型 CL CD Cm PI
Re=2.6×105 SD7032 0.875 0.010 3 -0.088 79.6
Optimal 0.947 0.009 6 -0.116 95.8
Re=3.6×105 SD7032 0.877 0.009 2 -0.088 89.1
Optimal 0.955 0.008 0 -0.117 117.4
Re=4.8×105 SD7032 0.880 0.008 5 -0.089 97.4
Optimal 0.951 0.007 5 -0.115 124.5
图 9 3目标优化得到的Pareto最优解与SD7032的翼型功率因子随Re变化曲线(α=4°) Fig. 9 Variation curves of PI with Re for optimal airfoil in Pareto set obtained by 3-objective design and SD7032 airfoil (α=4°)
4 结论

本文提出了一种采用流形结构重建的分布估计方法,应用于多目标优化算法。通过解析函数及翼型气动多目标优化算例,验证的本文方法的高效收敛特性,有以下结论:

1) 本文算法充分利用了目标函数空间Pareto前沿的流形结构,以此建立了解集的分布概率模型,用于指导算法演化,避免了传统进化算法盲目交叉变异的缺点,显著提升了优化效率。

2) 通过解析函数算例及2目标、3目标气动优化算例,比较了NSGA2与本文所提算法。结果表明本文算法收敛更快,其中翼型3目标优化设计能够减小约80%的计算量。

3) 流形结构信息能够很好地指导算法演化,充分利用流形结构信息能够极大提高多目标设计问题的优化效率。

参考文献
[1] 黄江涛, 高正红, 余婧, 等. 大型民用飞机气动外形典型综合设计方法[J]. 航空学报, 2019, 40(2): 522369.
HUANG J T, GAO Z H, YU J, et al. A typical integrated design method for aerodynamic shape optimization of large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522369. (in Chinese)
Cited By in Cnki | Click to display the text
[2] 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226.
YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226. (in Chinese)
Cited By in Cnki (31) | Click to display the text
[3] 夏露, 高正红, 李天. 飞行器外形多目标多学科综合优化设计方法研究[J]. 空气动力学学报, 2003, 21(3): 275-281.
XIA L, GAO Z H, LI T. Investigation of integrated multi-disciplinary and multi-objective optimization of the aircraft configuration design method[J]. Acta Aerodynamica Sinica, 2003, 21(3): 275-281. (in Chinese)
Cited By in Cnki (39) | Click to display the text
[4] FONSECA C M, FLEMING P J. Genetic algorithms for multi objective optimization: Formulation discussion and generalization[C]//Proceeding of the Fifth International Conference, 1993: 416-423.
[5] SRINIVAS N, DEB K. Multi objective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
Click to display the text
[6] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
Click to display the text
[7] 李倩, 詹浩, 朱军. 基于Pareto遗传算法的机翼多目标优化设计研究[J]. 西北工业大学学报, 2010, 28(1): 134-137.
LI Q, ZHAN H, ZHU J. Exploring combination of Pareto Genetic Algorithm(GA) with aerodynamic analysis software for multi-objective optimization of wing[J]. Journal of Northwestern Polytechnical University, 2010, 28(1): 134-137. (in Chinese)
Cited By in Cnki (15) | Click to display the text
[8] 李权, 郭兆电, 雷武涛, 等. 基于工程环境的气动多目标优化设计平台研究[J]. 航空学报, 2016, 37(1): 255-268.
LI Q, GUO Z D, LEI W T, et al. Engineering environment-based multi-objective optimization platform for aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 255-268. (in Chinese)
Cited By in Cnki (4) | Click to display the text
[9] MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.
Click to display the text
[10] TAN K C, LEE T H, KHOR E F. Evolutionary algorithms for multi-objective optimization:Performance assessments and comparisons[J]. Artificial Intelligence Review, 2002, 17(4): 251-290.
Click to display the text
[11] KIM H J, LIOU M S. Aerodynamic optimization using a hybrid moga-local search method[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010: 1-23.
[12] LAUMANNS M, RUDOLPH G, SCHWEFEL H P. Mutation control and convergence in evolutionary multi-objective optimization[C]//Proceedings of the 7th International Conference on Soft Computing, 2001: 24-29.
[13] LARRANAGA P, LOZANO J A. Estimation of distribution algorithms:A new tool for evolutionary computat-ion[M]. Berlin: Springer Science & Business Media, 2001.
[14] ZHOU A, ZHANG Q, JIN Y, et al. A model-based evolutionary algorithm for bi-objective optimization[C]//2005 IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2005: 2568-2575.
[15] ZHOU A, JIN Y, ZHANG Q, et al. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion[C]//2006 IEEE International Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2006: 3234-3241.
[16] ZHANG Q, ZHOU A, JIN Y. RM-MEDA:A regularity model-based multi-objective estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 41-63.
Click to display the text
[17] KUHN H W, TUCKER A W. Nonlinear programming[M]. Boston: Birk-Hauser, 2014: 247-258.
[18] KAMBHATLA N, LEEN T K. Dimension reduction by local principal component analysis[J]. Neural Computation, 1997, 9(7): 1493-1516.
Click to display the text
[19] 詹炜.求解高维多目标优化问题的流形学习算法研究[D].武汉: 中国地质大学, 2013.
ZHAN W. Research on manifold learning algorithm for high-dimensional multi-objective optimization problems[D]. Wuhan: China University of Geosciences, 2013(in Chinese).
[20] YANG D D, JIAO L C, GONG M G. Hybrid multi-objective estimation of distribution algorithm by Local Linear Embedding and an immune inspired algorithm[C]//2009 IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2009: 463-470.
[21] LARRANAGA P, LOZANO J A. Estimation of distribution algorithms. A new tool for evolutionary computat-ion[M]. Boston: Kluwer Academic Publishers, 2002.
[22] 孟德宇, 徐晨, 徐宗本. 基于ISOMAP的流形结构重建方法[J]. 计算机学报, 2010, 33(3): 545-555.
MENG D Y, XU C, XU Z B. A new manifold reconstruction method based on ISOMAP[J]. Chinese Journal of Computers, 2010, 33(3): 545-555. (in Chinese)
Cited By in Cnki (65) | Click to display the text
[23] REYES S M, COELLO C A C. A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization[C]//2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2005, 1: 65-72.
[24] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
Click to display the text
[25] SELIG M, DETERS R, WILIAMSON G. Wind tunnel testing airfoils at low Reynolds numbers[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 1-32.
http://dx.doi.org/10.7527/S1000-6893.2019.23687
中国航空学会和北京航空航天大学主办。
0

文章信息

宋超, 李伟斌, 周铸, 刘红阳, 蓝庆生
SONG Chao, LI Weibin, ZHOU Zhu, LIU Hongyang, LAN Qingsheng
基于流形结构重建的多目标气动优化算法
Multi-objective aerodynamic optimization algorithm based on manifold reconstruction
航空学报, 2020, 41(5): 623687.
Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623687.
http://dx.doi.org/10.7527/S1000-6893.2019.23687

文章历史

收稿日期: 2019-11-27
退修日期: 2019-12-02
录用日期: 2019-12-05
网络出版时间: 2019-12-13 11:17

相关文章

工作空间