文章快速检索  
  高级检索
太阳能无人机能源系统的关键技术与发展趋势
朱立宏1, 孙国瑞1, 呼文韬1, 李钏1, 付增英1, 于智航1, 刘正新2     
1. 中国电子科技集团公司第十八研究所, 天津 300384;
2. 中国科学院 上海微系统与信息技术研究所, 上海 200050
摘要: 作为探索临近空间领域的新兴飞行器,太阳能无人机(SUAV)在性能、技术及任务航时均呈现出不同于传统飞行器的新特点。其中,太阳能无人机能源系统的比能量、比功率是影响飞机整体性能的核心因素。因此,本文首先对太阳能无人机的太阳电池、储能电池的发展现状进行了阐述,然后针对能量获取多元化、能源系统管理高效化、能源载荷一体化方向对太阳能无人机能源系统的未来发展趋势进行了展望。
关键词: 太阳能无人机    临近空间    能源系统    能源管理    无线传能    光伏天线    人工智能    
Key technology and development trend of energy system in solar powered unmanned aerial vehicles
ZHU Lihong1, SUN Guorui1, HU Wentao1, LI Chuan1, FU Zengying1, YU Zhihang1, LIU Zhengxin2     
1. Tianjin Institute of Power Sources, Tianjin 300384, China;
2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract: As a new aircraft for exploring near space, Solar powered Unmanned Aerial Vehicle (SUAV) shows new characteristics different from traditional aircraft in performance, technology, and endurance. The specific energy and specific power of SUAV occupy important positions in aircraft performance. In order to carry out an in-depth research, this paper firstly elaborates the composition and key technologies of SUAV energy system and looks forward to the future research hotspots and development trends in the diversity of energy access, the high efficiency of energy management, and the integration of energy load.
Keywords: solar powered unmanned aerial vehicle    near space    energy system    energy management    wireless charging    photovoltaic antenna    artificial intelligence    

近年来,有关临近空间飞行器的研发兴起。资料显示,临近空间飞行器可以替代卫星的绝大部分功能,如通信、导航、农业、气象、测绘等。由于临近空间飞行器距离地面更近,它们因此具备卫星所不可比拟的成本优势和因距离产生的独到的技术优势[1-2]。在众多临近空间飞行器的研制中,临近空间无人机是其中的研究热点。常规无人机存在诸多不足,其中最主要的缺陷是空中停留时间较短,而造成这一问题的原因是常规无人机携带燃料有限且无法自制能量[3]。而太阳能光电技术的迅速进步,使得太阳能无人机获得了环境发电的能力,打破了常规无人机携带能源有限的限制,配合临近空间稳定的飞行条件,各国都纷纷掀起临近空间太阳能无人机的研发热潮,如“Zephyr”系列、“”Solara 50”“Aquila”“Helios”系列、“太阳脉动”系列和“彩虹”系列等[4-16]。由于太阳能无人机可利用外部环境自制能量,理论上续航时间几乎不受限制,但飞机依靠太阳电池发电能量来源单一且功率密度较低,储能电池组比能量的提升达到瓶颈、能源控制系统应对多变条件能力不足、边界条件限制、随机干扰因素过多等原因制约了飞机跨昼夜飞行的能力[17-19]。因此,突破现有太阳能无人机能源系统供电能力的瓶颈是目前太阳能无人机能源系统设计的当务之急,本文详细阐述太阳能无人机能源系统的组成、关键技术以及未来发展趋势,为未来飞行器的设计提供参考。

1 能源系统发展现状

太阳能无人机能源系统(如图 1所示)一般由太阳电池阵、储能电池及能源控制系统构成[19],本节主要针对太阳能无人机用的太阳电池与储能电池的发展现状进行阐述。

图 1 太阳能无人机能源系统组成 Fig. 1 Composition of solar powered unmanned aerial vehicle energy system
1.1 太阳电池

临近空间飞行器一般采用柔性、轻质、高效能太阳电池作为发电单元,而满足这样特征的太阳电池种类主要有非晶硅(α-Si)薄膜太阳电池、铜铟镓硒(CIGS)薄膜太阳电池、柔性多结砷化镓(GaAs)薄膜太阳电池以及晶体硅异质结(SHJ)电池、交叉背接触(IBC)电池、钝化发射极及背局域接触(PERC)电池等超薄晶体硅太阳电池,上述几种太阳电池的性能指标如表 1所示[20-31]

表 1 临近空间飞行器应用的太阳电池性能指标总结[20-31] Table 1 Summary of solar cell performances applied for near space vehicles[20-31]
电池种类 理论效率/%(AM0,1 353 W/m2) 目前效率/%(AM0,1 353 W/m2) 理论效率实现程度/% 目前单体太阳电池面密度/(g·m-2) 目前单体太阳电池比功率/(W·kg-1) 目前太阳电池柔性度
非晶硅 25 7 28 170 557 可弯曲180°以上
铜铟镓硒 28 PI衬底:10
不锈钢衬底:14.2
51 PI衬底:170
不锈钢衬底:800
PI衬底:796
不锈钢衬底:240
可弯曲180°以上
砷化镓 38 31 81 170 2 467 可弯曲180°以上
SHJ 26 20.5 79 233 1 190 可弯曲120°
IBC 26 21 81 320 888 可弯曲40°
PERC 26 18.75 72 300 845 可弯曲70°

从多年行业发展情况看,非晶硅太阳电池和铜铟镓硒太阳电池性能提升幅度有限,国内相关产业配套不完整限制了其进一步发展。柔性砷化镓太阳电池综合性能未来发展潜力最大,但目前由于产量较低造成成本较高,随着产业化水平提升其成本将逐渐降低。SHJ、IBC及PERC这3种电池均采用超薄单晶硅作为基材制作,但PERC电池和IBC电池由于电池结构不对称,且需要经过多道高温处理工序,产生的热应力会导致电池片弯曲,易破碎,产品成品率较低。其中IBC太阳电池由于其特殊结构,背面栅线必须达到一定密度才能保证串联电阻最低,这又造成其电极重量无法减轻。SHJ电池采用对称结构、异质结PN结设计和低温工艺制造,在3种晶硅电池中是最容易实现高效、超薄、超轻、高柔性的技术方案。综上分析,对于太阳能无人机应用前景较好的太阳电池种类为砷化镓电池和SHJ电池。

1.1.1 砷化镓太阳电池

与硅太阳电池相比,砷化镓太阳电池具有转换效率高、耐高温、抗辐射性能好和可制成全柔性电池等优点。近年来,新兴的柔性多结砷化镓薄膜太阳电池采用倒装晶格失配(IMM结构)结构制作,并配合外延剥离技术(Epitaxial Lift Off, ELO)进行柔性化处理,即在砷化镓衬底上外延生长GInP/GaAs/InGaAs等子电池,然后剥离并转移到柔性衬底上[21-22]。如图 2所示,由美国Micro Link公司研制的最新一代柔性砷化镓太阳电池比功率超过1 500 W/kg,面功率超过350 W/m2(AM1.5,1 000 W/m2)[21],并应用至了空客Zephyr S太阳能无人机项目上。如图 3所示,由中国电子科技集团公司第十八研究所研制的全柔性砷化镓太阳电池组件面密度为415 g/m2,半硬式砷化镓太阳电池组件面密度为550 g/m2,效率超过29%(AM0,1 353 W/m2,25 ℃)。但是,作为新型高效电池其产业配套处于起步阶段,应用成本在短时间内仍较高。

图 2 Micro Link公司研制的多结砷化镓太阳电池[21] Fig. 2 Multijunction GaAs solar cell developed by Micro Link[21]
图 3 中国电子科技集团公司第十八研究所研制的砷化镓电池组件 Fig. 3 GaAs cell module developed by Tianjin Institute of Power Sources
1.1.2 晶体硅异质结(SHJ)太阳电池

晶体硅异质结太阳电池是一种高效太阳电池,由日本三洋公司发明[25-26]。2011年该技术被引入中国,经过8年的发展已经实现国产化。国内中科院上海微系统与信息、技术研究所研制的超薄SHJ太阳电池的实验室最高转换效率达到24%(硅片厚度85 μm),产业化效率22.5%(硅片厚度95 μm)。SHJ电池利用薄膜硅电池技术,在晶体硅表面分别沉积超薄非晶硅薄膜叠层(每层厚度约5 nm)以及透明导电氧化物(约100 nm),加上金属电极制成具有对称结构的晶体硅/非晶硅异质结太阳电池,如图 4所示,图中TCO为透明导电膜;p/i a-Si为p型/本征非晶硅;i/n a-Si为n型/本征非晶硅;n type c-Si为n型单晶硅(表面结构)。

图 4 SHJ太阳电池结构示意图 Fig. 4 Schematic diagram of SHJ solar cell

由于SHJ太阳电池制作过程工艺温度低于200 ℃,避免了制作过程中由于高温热应力导致的硅片弯曲,降低了硅片破损的风险,成品率达到98%以上;具有两面对称结构,适宜于减薄,厚度为100 μm的电池依然保持较高的转换效率;高效、超薄、柔性的双面发电SHJ电池已经实现量产。如图 5所示,由中国电子科技集团公司第十八研究所研制的SHJ太阳电池组件平均面密度为540 g/m2,平均效率为21.3%(AM1.5,1 000 W/m2),单个组件最大尺寸达1.3 m×0.91 m,已实现产品应用。

图 5 中国电子科技集团公司第十八研究所研制的SHJ电池组件 Fig. 5 SHJ cell module developed by Tianjin Institute of Power Sources
1.2 储能电池

储能电池的比能量高低决定着太阳能无人机是否能够越夜飞行,循环寿命决定着太阳能无人机是否能够进行几周甚至上月的长航时飞行。目前长航时太阳能无人机使用比较成功的储能电池为锂硫电池和纳米线结构硅负极锂离子电池。

1.2.1 锂硫电池

美国Sion Power公司2004年研制的高能锂硫电池[32]比能量达到250~300 W·h/kg,可循环300周期。2010年Sion Power公司成功地将其研制的锂硫电池应用于由英国Qineti Q国防科技集团研发的高空太阳能无人机“Zephyr 7”,创造了无人机连续飞行14 d 22 min 8 s、飞行高度21 km、低温低气压应用环境等多项世界记录。所采用的Sion Power锂硫电池(如图 6所示),单体额定容量2.5 Ah、比能量达到350 W·h/kg、循环50周期。

图 6 太阳能无人机用锂硫电池组 Fig. 6 Lithium-sulfur battery applied for solar UAV
1.2.2 纳米线结构硅负极的锂离子电池

目前,美国Amprius公司已实现纳米线结构硅负极锂离子电池单体的批量生产[33],并配套给空客公司Zephyr SHAPS(高空伪卫星)无人机项目,电池重量能量密度大于435 W·h/kg,体积能量密度大于1 200 W·h/L。2018年7月11日,采用硅纳米线锂离子电池的Zephyr S太阳能无人机完成首飞,在飞行了25 d 23 h 57 min后于8月5日降落于亚利桑那沙漠,创造了飞行时间和飞行高度的非官方记录。

1.3 能源系统总结

目前太阳能无人机能源系统能够满足基本飞行要求[34]。但太阳能无人机要想实现实用化应用,有效载荷搭载能力至少为50 kg、飞行时间至少达到3个月,相应的太阳电池组件效率不低于30%(AM0,1 353 W/m2),储能电池单体比能量不低于450 W·h/kg,同时100%DOD循环寿命要达到100周期以上。

就目前国内外发展情况来看,砷化镓太阳电池组件效率最高可达到31%(AM0,1 353 W/m2),已基本满足实用化应用太阳能无人机的发电需求,但高比能锂离子电池的循环周期仅为30~50周期,在此之后电池比能量存在较大的衰减,与实用化太阳能无人机的技术要求存在较大差距,且短时间内很难突破。

2 关键技术发展趋势

储能电池的技术瓶颈限制了实用化应用太阳能无人机的长航时越夜飞行,拓宽能量来源、寻找太阳能无人机能源系统自身的优化方案是现阶段太阳能无人机能源系统发展的较优方案。

从能量获取角度分析,储能电池蓄电能力有限,不足以将白天太阳电池所发电力充分吸收,而夜间又无其他手段补充能量,这就降低了太阳能无人机的长时间飞行能力。若突破太阳能这种单一能源获取方式的限制,则会大幅提升太阳能无人机的续航能力。

从能源系统优化角度分析,临近空间太阳能无人机的大尺度机翼造成光伏发电能力差异大、负荷分布不平衡,使得飞机的能量调度以及协同控制难度加大,能源系统的整体利用率降低。若采用合理的智能化能量调度方案,则会大幅提升储能电池组的有效放电深度,同时降低能量网络中传输损耗,从而降低对储能电池组比能量的要求。

从任务角度分析,太阳能无人机实现通讯中继、电子侦测等功能离不开大口径、高性能天线,而传统天线由于太阳电池阵的屏蔽作用,在安装时挤占其安装面积,使能源系统与载荷系统无法同时达到最优,且突出的天线还会破坏飞机的气动外形影响升阻比,降低气动效率。若以平面阵天线技术为基础将太阳电池阵与天线阵一体化,则可同时实现载荷的轻量化、太阳电池阵布片面积最大化以及气动外形最优化,从而降低飞机对能源系统的整体要求,特别是储能电池比能量的要求。综合来看,在突破储能电池瓶颈前,现阶段太阳能无人机的主要发展方向为能量获取多元化、能源系统管理高效化以及能源载荷系统一体化。如表 2所示,具体的可实施方向为无线传能技术、智能化能源系统以及太阳电池阵与天线载荷一体化。

表 2 太阳能无人机能源系统的未来发展方向 Table 2 Future development direction of solar UAV energy system
平台形式 能量来源形式 能源方面制约问题 发展方向
50 m以上大型无人机
20~50 m中型无人机
太阳能+储能 能源获取来源单一
能源调度策略匮乏
能源系统功能单一
研究无线传能技术
研究智能化能源系统
研究能源载荷一体化
20 m以下小型无人机 太阳能+储能
燃料电池+太阳能
一/二次锂电池
面积小,太阳能发电量低
系统功率低,密度低抗风能力差
研究无线传能技术
研究系留传能技术
2.1 能量获取多元化

储能电池组储能能力有限、太阳电池发电功率密度低,制约着临近空间飞行器技术的发展,即太阳能无人机对能量来源问题解决方案的改变提出了迫切要求。如图 7所示,拓展能量来源渠道、发展无线传能技术是未来支撑临近空间太阳能无人机长时驻空执行任务的有效途径之一。

图 7 无线传能示意图 Fig. 7 Schematic diagram of wireless energy transmission

基于对各类无线传能技术特点的调研分析(如表 3[35-55]所示)可知,针对于临近空间太阳能无人机20 km级的飞行高度,适合的传能方式为激光无线传能与微波无线传能。

表 3 各类无线传能技术的特点分析[35-55] Table 3 Characteristic analysis of various wireless energy transfer technologies[35-55]
无线传能技术 传输距离 优点 缺点或挑战
电磁感应式无线传能 毫米级~40厘米级 充电系统简单,极短距离时充电效率非常高 充电效率随传输距离的增大急剧降低
电磁共振式无线传能 分米级~10米级 能量传输效率较高,功率水平适中,能量传输不受空间障碍物影响 近传输距离传输效率适中,安全与健康问题有待确定解决
激光无线传能 百米级~千米级(地面);
千米级~数十千米级(临近空间或太空)
具有良好的指向性,能量集中,传输距离相对较远,且不会干扰电磁通信 激光传能受障碍物影响,且随着在大气中传输距离的增长,能量不断衰减
微波无线传能 千米级~数百千米级 传输距离很远;频率越高,传播的能量越大;在大气中能量传递损耗相对很小 微波传能定向性较差,随着传输距离的增大,接收系统需很大的接收面积
2.1.1 激光无线传能技术

激光无线传能技术具有指向性好、光电接收面积小和传输距离远等特点,适用于远距离传能应用领域[44-50]。近年来,美国、日本、欧洲等国家纷纷开展了无人机激光无线能量传输技术的研究(如图 8[43]所示)。2005年,美国国家航空和宇宙航行局的马歇尔空间飞行中心利用强激光(输出功率500 W、输出波长940 nm)对15 m以外微型飞行器表面的三结Ga:In:P2光电池进行照射,实现对微型发动机供电(6 W)并保证了其正常工作。2012年,美国洛克希德·马丁公司与美国激光动力公司成功试验了一种新型激光能量传输系统对“潜行者”(Stalker)无人机室外无线传能,实现了无人机连续48 h的空中飞行[45-46]

图 8 激光无线传能[43] Fig. 8 Wireless transmission of laser energy[43]
2.1.2 微波无线传能技术

微波无线传能技术是以地球与大气电离层作为谐振器,使两者之间发生低频谐振向外发射频率8 Hz的电磁波,利用可在空间内使用的接收天线自由接收电能[51-55]。在1964年Brown首次成功验证微波动力直升机后,美国、日本等国家纷纷开始了无人机微波无线传能技术领域的研究。1992年,日本“MILAX”研制了2.411 GHz的微波驱动飞机,实现了25 m的无线充电飞行。2006年,美国NASA Longley研究中心探索了微波无线传能技术在高空飞行器中的应用,并针对高空飞行器提出了2种应用模式:第1种是当白天太阳辐射充足时,利用微波无线传能技术将高空飞行器中多余的能量传输给下方的小型无人机供电;第2种模式是晚上依靠电池供电时利用微波无线传能技术从地面向高空飞行器供电,支持其完成各项夜间任务[54-55]

综上所述,这2种无线传能技术均有应用至临近空间太阳能无人机的可能性。对比2种技术发现,激光无线传能方式的指向性好,有利于临近空间无人机的能量收集,技术成熟高,但激光在大气中的传输效率较低[41];微波传能技术在大气中传输效率近乎100%[41],但远距离传输时接收系统需要较大的接收口径,很难在无人机上进行安装。此外,微波产生的GHz级别的交流电整流技术不成熟也影响了该技术的应用[51-52]。因此,未来完成微波聚集、高频交流电整流等关键技术突破后,微波无线传能更具潜力。但现阶段来看,无人机领域发展激光无线传能具有着更强的可实施性。总体来看,根据技术进步周期,太阳能无人机的无线传能技术发展可划分为2个阶段:

1) 前沿探索与可行性论证阶段

全面理清未来临近空间飞行器应用无线传能技术的技术体系组成,基于无线传能技术的理论分析、模拟仿真和关键技术探索,论证分析激光、微波无线传能技术的潜在发展空间。针对面向临近空间的各类应用场景,通过理论建模与探索性科学实验相结合,依次研究近程(数百米级)、中程(数千米级)、远程(数千千米级)无线传能技术理论可行性以及技术可实现性,提出应用至临近空间太阳能无人机的无线传能方案与技术发展路线,原理验证技术方案的可行性。

2) 关键技术攻关与系统集成演示阶段

激光无线传能技术:突破高电光效率激光器设计、多光束高效合成、高效率光束扩束与准直设计、高效率光电转换半导体材料设计与合成、高效率太阳电池器件制备、激光传输链路识别等关键技术,形成传输功率千瓦级至百千瓦级、地面及临近空间传输距离1~10 km、传输效率10%~20%的中远距离激光传能能力,形成激光传能系统整机的批量制造生产能力。

微波无线传能技术:突破聚焦发射阵列天线技术、大功率发射天线阵列设计、高效率电磁表面接收、高性能二极管设计与制造、高效率整流电路设计以及通信系统频率干扰解决方案等关键技术,形成传输功率千瓦级至兆瓦级、传输距离(地面-临近空间、临近空间-临近空间)5~20 km、系统传输效率20%~30%的微波无线传能能力。

2.2 能源系统管理高效化

目前,太阳能无人机能源系统仍不能很好地兼顾能量平衡、功率平衡、重量平衡三方面要求,严重制约着能源控制系统性能的提高。在临近空间太阳能无人机实际运行过程中,为保证能源系统对多种载荷用电需求的支持,控制系统中不得不大量增加导线、变流器、储能电池等设备的数量,由此造成系统整体重量增加,降低了系统效率[56-59]。具体来说,现有能源控制系统存在如下缺点:①太阳电池阵、储能电池布局尺度大,载荷种类多样且安装位置分散,导致电力传输线距离过长,线路损耗大;②光照条件的不确定性导致充放电过程难以预测,储能电池特性各异导致多次充放电后电池不一致性增加,放电深度降低,供电能力下降;③过多的电池放电安全余量、大量的直流变流器单元增加了能源系统的重量,降低了飞行器的有效载荷,同时对电池供电能力提供了更高要求,二者相互制约。

为解决上述能源控制问题,提升能源系统的效率,首先进行太阳能无人机在复杂工况下的系统运行模式分析,其次进行能源系统的优化设计,建立系统的拓扑模型和能流模型,以能量平衡及能流高效为优化目标,分析多目标优化问题,在线求解,智能调度。最后,围绕软件控制策略完成能源系统硬件设计制造。具体实现方法如下:

1) 复杂工况下的系统运行模式分析

在时间尺度上,每一时刻点的控制目标是供需功率平衡,全天时间尺度上系统控制目标是能量平衡,但在实际运行时载荷需求引入的扰动,太阳电池阵全天发电能量的不均衡性,储能电池蓄电能力和充放电倍率约束均会使这2个控制目标无法兼顾,造成有些时段、有些模块能量吃紧无法充电,而有些时段还可能出现能量过剩储能电池无法吸收的现象。所以,应研究合理的能量调度规则在满足系统功率平衡前提下均衡充/放电,使系统运行效率达到最高,这样在整个白天这个尺度上系统的控制目标是储能电池组以大致相同的速度充满电来实现能量平衡,为夜间工作做好准备。同理,在整个夜晚这个尺度上系统控制目标是储能电池以大致相同的速度放电,以基本一致的状态迎接第2天的充电过程。而功率平衡作为整个控制过程的约束条件,关键研究点包括多个体系统协同控制技术、执行器饱和情况下的储能单元均衡充放电技术以及功率网关系统的构建。

2) 系统控制模型的建立及其控制方法

能源系统建模过程为首先建立能源系统的静态连接模型,结合图论的拓扑变换方法后,确定多元发电及用电结点之间的静态网络联络模型。之后,建立能源系统的动态能流模型,研究数据与机理融合建模方法。最后,建立微观导纳模型与宏观能流动力模型,为能源系统的智能调度提供方法论。

结合太阳能无人机发电单元、储能单元、用电单元的关系以及大尺度临近空间无人机的特点,其能源系统控制模型应构建为多个体系统,采用分布式协同控制方法实现各个模块间的协同工作,进而达成系统均衡与能量供需平衡的控制目标。分布式协同控制策略不需要独立的决策和控制中心对每个结点单元进行控制,而是每个结点单元通过局部信息交互独立地实现周围一定区域内的结点协同工作,依赖覆盖所有结点的网络连通性将网络内的全部结点有机地联系起来,实现全网络的协同。

3) 控制系统硬件构建原则

太阳能无人机能源控制系统硬件应以运行可靠性、配置灵活性、负荷匹配、轻质化等为准则,通过理论研究、软件仿真、半实物模拟等途径,研究遵循“模块组合、分层布置、分区供电、跨区调度、智能自治”设计理念的拓扑结构和工程实现方法。

2.3 能源载荷一体化

临近空间太阳能无人机利用其高空低速性能容易实现通讯中继、电子侦测等功能,这些应用都离不开大口径、高性能天线。传统天线由于太阳电池阵的屏蔽作用在安装时必会挤占能源系统安装面积,使能源系统与载荷系统都无法达到最优,且突出的天线还会破坏无人机的气动外形影响升阻比,降低气动效率。针对这一问题,未来的解决方案是采用平面阵天线技术为基础将太阳电池阵与天线阵一体化。如图 9所示,近年来国内外学者针对光伏天线展开了广泛研究,主要分为以下几类:①间隙型光伏天线;②贴片型光伏天线;③集成太阳翼的平面反射阵天线;④透明太阳能平面反射阵天线;⑤超材料光伏天线;⑥偶极子光伏天线[60-67]

图 9 光伏天线的组成类型 Fig. 9 Composition type of photovoltaic antenna

就当前研究现状来看,光伏阵列和天线阵列结构一体化研究已经较为广泛,出现了多种结构形式。但大部分设计都将太阳电池作为反射板使用,天线和馈电结构需要单独加工,无法实现太阳电池和天线真正的融合,不仅产生了额外费用,也增加了系统复杂度和不稳定性。仅有少数研究开始尝试将太阳电池作为天线辐射主体使用,但是这种新型设计处在起步阶段,相关技术仍处于学术研究阶段,也没有充分考虑实际应用中太阳能发电系统和天线系统的兼容性问题。因此,结合太阳能无人机的特点,光伏天线未来发展的关键技术可分为如下3点:

1) 解决太阳电池的微波交流等效电路模型缺失的科学问题。通过研究太阳电池的多层结构,特别是外延层在微波频段下的电导率和损耗等电磁特性分析,以及太阳电池对有无光照条件下不同交流等效电路模型的差异,明确太阳电池作为微波天线主要辐射结构的可行性问题。

2) 解决太阳电池和微波天线一体化设计的可行性问题。未来可采用现有太阳电池作为天线的辐射主体,实现太阳电池和微波天线的结构/功能一体化。

3) 解决太阳电池和微波天线的交流和直流信号电磁兼容性问题。现有一体化光伏天线面临的关键问题是如何解决太阳电池直流端口和微波端口的相互耦合问题,未来可提出一种采用表面封装器件的低成本滤波器电路设计方案来解决交直流电路的兼容性问题。

3 结论

作为探索临近空间领域的新兴飞行器,太阳能无人机有良好的发展前景,其能源系统仍制约着太阳能无人机的航时及可靠性,以致于现阶段仍无法使其大范围应用工程。现阶段太阳能无人机能源系统的主要关键技术及发展趋势如下:

1) 储能电池技术暂时无法满足需求且技术发展遇到瓶颈,能源系统可利用体积、面积受制约,分布式能源系统能流调度策略匮乏不具备智能性是目前中大型太阳能无人机能源系统的发展瓶颈。

2) 能量获取多元化、能源系统管理高效化、光伏与天线载荷一体化是未来临近空间太阳能无人机能源系统的发展趋势。

参考文献
[1] 唐克, 冯宝龙, 谢保军, 等. 临近空间飞行器开发利用现状与发展趋势[J]. 飞航导弹, 2012(11): 44-48, 96.
TANG K, FENG B L, XIE B J, et al. Development and utilization status and develop trend of near-space vehicle[J]. Aerodynamic Missile Journal, 2012(11): 44-48, 96. (in Chinese)
Cited By in Cnki (4) | Click to display the text
[2] 袁立群, 黄良平. 国外临近空间超长航时无人机发展及应用情况综述[J]. 战术导弹技术, 2018(2): 26-30.
YUAN L Q, HUANG L P. The summarization of the development and application of near space super long endurance UAV in foreign country[J]. Tactical Missile Technology, 2018(2): 26-30. (in Chinese)
Cited By in Cnki | Click to display the text
[3] 李延平, 刘莉. 太阳能/氢能混合动力无人机及关键技术[J]. 飞航导弹, 2014(7): 39-45.
LI Y P, LIU L. Solar/hydrogen hybrid unmanned aerial vehicles and key technologies[J]. Aerodynamic Missile Journal, 2014(7): 39-45. (in Chinese)
Cited By in Cnki (2) | Click to display the text
[4] 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1): S1-S7.
ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): S1-S7. (in Chinese)
Cited By in Cnki (1) | Click to display the text
[5] BOUCHER R J. History of solar flight[C]//20th Joint Propulsion Conference, 1984.
[6] 李晨飞, 姜鲁华. 临近空间长航时太阳能无人机研究现状及关键技术[J]. 中国基础科学, 2018(2): 22-31.
LI C F, JIANG L H. Research status and key technology of near space long endurance high altitude solar-powered unmanned air vehicle[J]. China Basic Science, 2018(2): 22-31. (in Chinese)
Cited By in Cnki | Click to display the text
[7] 陶于金. 临近空间超长航时太阳能无人机发展及关键技术[J]. 航空制造技术, 2016(18): 26-30.
TAO Y J. Development and key technology on near space long voyage solar unmanned aerial vehicle[J]. Aeronautical Manufacturing Technology, 2016(18): 26-30. (in Chinese)
Cited By in Cnki (4) | Click to display the text
[8] NOLL T E, BROWN J M, PETERZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap: NASA 23681-2199[R]. Washington, D.C.: NASA, 2004: 225-236.
[9] RON L. Soaring on a solar impulse[J]. Aerospace America, 2009, 32-36.
Click to display the text
[10] ANDRÉ N, SIEGWART R, ENGEL W H. Design of solar powered airplanes for continuous flight[J]. Environmental Research, 2008, 1093-1097.
[11] REINHARDT K C, LAMP T R, GEIS J W, et al. Solar-powered unmanned aerial vehicles[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Piscataway, NJ: IEEE Press, 1996: 41-46.
[12] BALDOCK N, MOKHTARZADEH-DEHGHAN M R. A study of solar-powered, high-altitude unmanned aerial vehicles[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(3): 187-193.
Click to display the text
[13] ZHANG W, LV S L, GUAN X Q. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle[J]. IOP Conference Series:Materials Science and Engineering, 2017, 242: 012009.
Click to display the text
[14] JASHNANI S, SHAHOLIA P, KHAMKER A, et al. Preliminary design of solar powered unmanned aerial vehicle[J]. Applied Mechanics & Materials, 2012, 225: 315-322.
Click to display the text
[15] LI S, ZHOU W, WANG X. The development status and key technologies of solar powered unmanned air vehicle[J]. IOP Conference Series:Materials Science and Engineering, 2017, 187(1): 012011.
Click to display the text
[16] ROMEO G, FRULLA G, CESTINO E. Heliplat:Design, aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6): 1505-1520.
Click to display the text
[17] CESTINO E. Design of solar high altitude long endurance aircraft for multi-payload and operations[J]. Aerospace Science and Technology, 2006, 10(6): 541-550.
Click to display the text
[18] RAJENDRAN P, SMITH H. Review of solar and battery power system development for solar-powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125: 641-647.
Click to display the text
[19] 曲鹏, 王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015(4): 864-870.
QU P, WANG Y. Development status and prospect of solar power systems for UAVs[J]. Chinese Journal of Power Sources, 2015(4): 864-870. (in Chinese)
Cited By in Cnki (4) | Click to display the text
[20] 张传军, 褚君浩. 薄膜太阳电池研究进展和挑战[J]. 中国电机工程学报, 2019, 39(9): 2524-2531.
ZHANG C J, CHU J H. Research progress and challenges of thin film solar cells[J]. Proceedings of the CSEE, 2019, 39(9): 2524-2531. (in Chinese)
Cited By in Cnki | Click to display the text
[21] UAS VISION. Microlink devices solar sheet powers airbus Zephyr S HAPS solar aircraft[DB/EL]. (2019-05-17)[2019-09-17].https://www.uasvision.com/2018/10/22/microlink-devices-solar-sheet-powers-airbus-zephyr-s-haps-solar-aircraft/.
[22] BAUHUIS G J, MULDER P, HAVERKAMP E J, et al. 26.1% thin-film GaAs solar cell using epitaxial lift-off[J]. Solar Energy Materials & Solar Cells, 2009, 93(9): 1488-1491.
Click to display the text
[23] GEELEN A V, HAGEMAN P R, BAUHUIS G J, et al. Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate[J]. Materials Science and Engineering:B, 1997, 45(1-3): 162-171.
Click to display the text
[24] LEE K, ZIMMERMAN J D, XIAO X, et al. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers[J]. Journal of Applied Physics, 2012, 111(3): 033527.
Click to display the text
[25] 潘振, 呼文韬, 王寅, 等. 适用于太阳能飞行器的单晶硅太阳电池[J]. 电源技术, 2016, 40(8): 1722-1725.
PAN Z, HU W T, WANG Y, et al. Monocrystalline Si solar cells suitable for solar aerial vehicle[J]. Chinese Journal of Power Sources, 2016, 40(8): 1722-1725. (in Chinese)
Cited By in Cnki (3) | Click to display the text
[26] 邸明东, 周骏, 孙铁囤, 等. 基于P型晶体硅异质结太阳电池的结构设计与性能分析[J]. 太阳能学报, 2010, 31(10): 1343-1348.
DI M D, ZHOU J, SUN T T, et al. The constructer design and performance analyses of heterojunction solar cell based on c-Si(p) substrates by simulation[J]. Acta Energiae Solaris Sinica, 2010, 31(10): 1343-1348. (in Chinese)
Cited By in Cnki | Click to display the text
[27] 程雪梅, 孟凡英, 汪建强, 等. P型晶体硅异质结太阳电池光电特性模拟研究[J]. 太阳能学报, 2012, 33(9): 1474-1479.
CHENG X M, MENG F Y, WANG J Q, et al. Simulation of heterojunction solar cells based on p-type silicon wafer[J]. Acta Energiae Solaris Sinica, 2012, 33(9): 1474-1479. (in Chinese)
Cited By in Cnki (3) | Click to display the text
[28] CENTURIONI E, IENCINELLA D. Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance[J]. IEEE Electron Device Letters, 2003, 24(3): 177-179.
Click to display the text
[29] JENSEN N, RAU U, HAUSNER R M, et al. Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells[J]. Journal of Applied Physics, 2000, 87(5): 2639.
Click to display the text
[30] WANG W N, SCHIFF E. A. Polyaniline on crystalline silicon heterojunction solar cells[J]. Applied Physics Letters, 2001, 91(13): 133504.
[31] NEITZERT H C, SPINILLO P, BELLONE S, et al. Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell[J]. Solar Energy Materials & Solar Cells, 2004, 83(4): 435-446.
Click to display the text
[32] 万文博, 蒲薇华, 艾德生. 锂硫电池最新研究进展[J]. 化学进展, 2013, 25(11): 1830-1841.
WAN W B, PU W H, AI D S. Research progress in lithium sulfur battery[J]. Progress in Chemistry, 2013, 25(11): 1830-1841. (in Chinese)
Cited By in Cnki (37) | Click to display the text
[33] 傅焰鹏, 陈慧鑫, 杨勇. 锂离子电池硅纳米线负极材料研究[J]. 电化学, 2009(1): 56-61.
FU Y P, CHEN H X, YANG Y. Silicon nanowires as anode materials for lithium ion batteries[J]. Electrochemistry, 2009(1): 56-61. (in Chinese)
Cited By in Cnki (19) | Click to display the text
[34] 朱炳杰, 杨宇丹, 杨希祥, 等. 太阳能飞行器能源昼夜闭环仿真分析[J]. 宇航学报, 2019, 40(8): 878-886.
ZHU B J, YANG Y D, YANG X X, et al. Energy closed-loop simulation and analysis for solar powered aircraft round the clock[J]. Journal of Astronautics, 2019, 40(8): 878-886. (in Chinese)
Cited By in Cnki | Click to display the text
[35] 戴卫力, 费峻涛, 肖建康, 等. 无线电能传输技术综述及应用前景[J]. 电气技术, 2010(7): 18-23.
DAI W L, FEI J T, XIAO J K, et al. An overview and application prospect of wireless power transmission technology[J]. Electrical Engineering, 2010(7): 18-23. (in Chinese)
Cited By in Cnki (71) | Click to display the text
[36] WILLIAM C B. The history of wireless power transmission[J]. Solar Energy, 1996, 56(1): 3-21.
Click to display the text
[37] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述[J]. 电工技术学报, 2019, 34(7): 5-32.
FAN X M, GAO L L, MO X Y, et al. Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 5-32. (in Chinese)
Cited By in Cnki | Click to display the text
[38] 张茂春, 王进华, 石亚伟. 无线电能传输技术综述[J]. 重庆工商大学学报(自然科学版), 2009, 26(5): 75-78.
ZHANG M C, WANG J H, SHI Y W. Review of the wireless power transmission technology[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2009, 26(5): 75-78. (in Chinese)
Cited By in Cnki (107) | Click to display the text
[39] LU F, ZHANG H, MI C. A review on the recent development of capacitive wireless power transfer technology[J]. Energies, 2017, 10(11): 1752.
Click to display the text
[40] 李维. 空间太阳能电站无线能量传输技术[J]. 国际太空, 2015, 15(1): 63-69.
LI W. Wireless energy transmission technology for space solar power station[J]. Space International, 2015, 15(1): 63-69. (in Chinese)
Cited By in Cnki (11) | Click to display the text
[41] 赵慧, 张学, 刘明, 等. 实现无线传输能量效率最大化的功率控制新方法[J]. 计算机应用, 2013, 33(2): 365-381.
ZHAO H, ZHANG X, LIU M, et al. New power control scheme with maximum energy efficiency in wireless transmission[J]. Journal of Computer Applications, 2013, 33(2): 365-381. (in Chinese)
Cited By in Cnki (2) | Click to display the text
[42] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 9-23.
ZHANG B, SHU X J, HUANG R H. The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 9-23. (in Chinese)
Cited By in Cnki (1) | Click to display the text
[43] LU X, WANG P, NIYATO D, et al. Wireless charging technologies:Fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1413-1452.
Click to display the text
[44] 唐亮, 仲元昌, 张成祥, 等. 激光无线传能关键技术研究现状及发展趋势[J]. 激光杂志, 2017(10): 32-36.
TANG L, ZHONG Y C, ZHANG C X, et al. Research situation and development trend of laser wireless power transmission key technology[J]. Laser Journal, 2017(10): 32-36. (in Chinese)
Cited By in Cnki | Click to display the text
[45] 金星, 常浩, 崔晓阳. 激光输能无人机的概念研究[J]. 航空学报, 2013, 34(9): 2074-2080.
JIN X, CHANG H, CUI X Y. Concept research of laser-motive UAV[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2074-2080. (in Chinese)
Cited By in Cnki (3) | Click to display the text
[46] 周玮阳, 金科. 无人机远程激光充电技术的现状和发展[J]. 南京航空航天大学学报, 2013, 45(6): 784-791.
ZHOU W Y, JIN K. Status and trends of laser powered unmanned aerial vehicles[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6): 784-791. (in Chinese)
Cited By in Cnki (6) | Click to display the text
[47] 崔子浩, 华文深, 李刚, 等. 无人机激光无线能量传输及跟踪瞄准方法研究[J]. 激光与红外, 2018, 48(3): 275-279.
CUI Z H, HUA W S, LI G, et al. Research of laser wireless power transmission for UAVs and its tracking pointing methods[J]. Laser & Infrared, 2018, 48(3): 275-279. (in Chinese)
Cited By in Cnki | Click to display the text
[48] 李志鹏, 张燕革, 艾勇, 等. 无人机激光跟踪与无线供能系统[J]. 激光技术, 2018, 42(3): 22-26.
LI Z P, ZHANG Y G, AI Y, et al. Laser tracking and wireless power supply system for unmanned aerial vehicles[J]. Laser Technology, 2018, 42(3): 22-26. (in Chinese)
Cited By in Cnki | Click to display the text
[49] 刘晓光, 华文深, 刘恂, 等. 激光供能无人机光伏接收器效率优化方法[J]. 红外与激光工程, 2016, 45(3): 0306002.
LIU X G, HUA W S, LIU X, et al. Methods to improve efficiency of photovoltaic receiver for laser powered unmanned aerial vehicle[J]. Infrared and Laser Engineering, 2016, 45(3): 0306002. (in Chinese)
Cited By in Cnki | Click to display the text
[50] CHEN Q, ZHANG D, ZHU D, et al. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles[C]//Applied Optics and Photonics China (AOPC2015), 2015.
[51] 康湛毓. 2.45 GHz高效率微带整流天线的研究[D].成都: 电子科技大学, 2016.
KANG Z Y. The research of 2.45 GHz high efficiency microstrip rectenna for microwave power transmission[D]. Chengdu: University of Electronic Science and Technology of China, 2016 (in Chinese).
Cited By in Cnki | Click to display the text
[52] 李奥博.无线能量传输系统中整流技术研究[D].上海: 上海交通大学, 2012.
LI A B. Research on rectifier technology for wireless power transmission system[D]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese).
Cited By in Cnki (7) | Click to display the text
[53] 杨永穆.用于无线能量传输的方向回溯天线研究[D].成都: 电子科技大学, 2018.
YANG Y M. The research of retrodirective array used in wireless power transfer[D]. Chengdu: University of Electronic Science and Technology of China, 2018 (in Chinese).
Cited By in Cnki | Click to display the text
[54] 张灿, 张强. 微型飞行器微波电能传输系统研究综述[J]. 飞航导弹, 2014(5): 18-21.
ZHANG C, ZHANG Q. Summary of research on micro air vehicle microwave power transmission system[J]. Aerodynamic Missile Journal, 2014(5): 18-21. (in Chinese)
Cited By in Cnki (4) | Click to display the text
[55] SHIMAMURA K, SAWAHARA H, ODA A, et al. Feasibility study of microwave wireless powered flight for micro air vehicles[J]. Wireless Power Transfer, 2017, 4(2): 146-159.
Click to display the text
[56] 胡斌, 时景立, 冯利军. 太阳能无人机能源管理器研究与设计[J]. 电源技术, 2015, 39(10): 2161-2165.
HU B, SHI J L, FENG L J. Research and design of power management system of solar unmanned aerial vehicle[J]. Chinese Journal of Power Sources, 2015, 39(10): 2161-2165. (in Chinese)
Cited By in Cnki (2) | Click to display the text
[57] 赵争鸣. 太阳能光伏发电最大功率点跟踪技术[M]. 北京: 电子工业出版社, 2012.
ZHAO Z M. Maximum power point tracking technology for photovoltaic power generation[M]. Beijing: Electronic Industry Press, 2012. (in Chinese)
[58] 呼文韬.太阳能飞行器太阳能能源系统的设计与实现[D].天津: 天津大学, 2013.
HU W T. Design and implementation of power system for solar energy air vehicle[D].Tianjin: Tianjin University, 2013 (in Chinese).
Cited By in Cnki (2) | Click to display the text
[59] 陆运章, 郭进, 程文进, 等. 太阳能无人机能源控制器研究与设计[J]. 电子工业专用设备, 2017(3): 45-50.
LU Y Z, GUO J, CHENG W J, et al. Research and design of power management controller of solar unmanned aerial vehicle[J]. Equipment for Electronic Products Manufacturing, 2017(3): 45-50. (in Chinese)
Cited By in Cnki | Click to display the text
[60] AMMANN M J, MCEVOY P, NARBUDOWICZ A, et al. Circularly polarised solar antenna for airborne communication nodes[J]. Electronics Letters, 2015, 51(9): 667-669.
Click to display the text
[61] CONCHUBHAIR O, MCEVOY P, AMMANN M J. Integration of antenna array with multicrystalline silicon solar cell[J]. IEEE Antennas and Wireless Propagation Letters, 2015(14): 1231-1234.
Click to display the text
[62] ARAKI K, SUZUKI Y, SUZUKI R, et al. Microstrip antenna with solar cells for microsatellites[J]. Electronics Letters, 1995, 31(1): 5-6.
Click to display the text
[63] HASSAN M A, KISHK A A. Optically transparent reflect array antenna design integrated with solar cells[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1700-1712.
[64] AN W, XU S, YANG F, et al. A Ka-band reflect array antenna integrated with solar cells[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5539-5546.
[65] SHYNU S V, ONS M J R, MCEVOY P, et al. Integration of microstrip patch antenna with polycrystalline silicon solar cell[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(12): 3969-3972.
Click to display the text
[66] TA S X, LEE J J, PARK I. Solar-cell metasurface-integrated circularly polarized antenna with 100% insolation[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2675-2678.
[67] O'CONCHUBHAIR O, MCEVOY P, AMMANN M J. Dye-sensitized solar cell antenna[J]. IEEE Antennas Wireless Propagation Letters, 2017(16): 352-355.
Click to display the text
http://dx.doi.org/10.7527/S1000-6893.2019.23503
中国航空学会和北京航空航天大学主办。
0

文章信息

朱立宏, 孙国瑞, 呼文韬, 李钏, 付增英, 于智航, 刘正新
ZHU Lihong, SUN Guorui, HU Wentao, LI Chuan, FU Zengying, YU Zhihang, LIU Zhengxin
太阳能无人机能源系统的关键技术与发展趋势
Key technology and development trend of energy system in solar powered unmanned aerial vehicles
航空学报, 2020, 41(3): 623503.
Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623503.
http://dx.doi.org/10.7527/S1000-6893.2019.23503

文章历史

收稿日期: 2019-09-18
退修日期: 2019-11-04
录用日期: 2019-11-14
网络出版时间: 2019-11-22 09:23

相关文章

工作空间