文章快速检索  
  高级检索
变热线过热比可压缩流湍流度测量方法优化
杜钰锋1, 林俊1, 王勋年2, 熊能1     
1. 中国空气动力研究与发展中心 高速空气动力研究所, 绵阳 621000;
2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000
摘要: 开展了可压缩流中湍流度测量技术的优化研究,以满足对试验数据高精度评估的需求。在变热线过热比湍流度测量方法推导过程中,忽略了压力脉动项以简化湍流度求解过程。为更加准确评估高速风洞流场湍流度,引入了压力脉动项,以恒温热线风速仪响应关系式为基础,从理论上对可压缩流中湍流度的求解方法进行了优化。在马赫数0.3~0.7进行了湍流度测量试验,并分别利用优化前后的湍流度求解方法对试验数据进行了处理。结果表明两种求解方法所得的湍流度结果量值相近,但优化后的湍流度求解方法所得的湍流度结果随马赫数的变化趋势更加符合客观物理规律。利用蒙特卡洛模拟方法对湍流度的不确定度进行了求解,不确定度量值远小于湍流度量值,表明优化后的湍流度求解方法所得的湍流度结果基本能够代表真实值。试验结果证明了优化后湍流度测量方法的正确性及应用恒温热线风速仪对高速风洞流场湍流度进行测量的可行性。
关键词: 可压缩流     湍流度     过热比     蒙特卡洛模拟     不确定度    
Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer
DU Yufeng1, LIN Jun1, WANG Xunnian2, XIONG Neng1     
1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract: In order to increase the measurement precision of a compressible flow, an optimization of turbulence level measurement technique is studied. By changing the overheat ratio of hot-wire anemometer and neglecting the pressure fluctuation terms in the governing equations, the turbulence level is solved. In order to evaluate the turbulence level in high speed flow more precisely, the algorithm for turbulence level based on response function of constant temperature hot-wire anemometer in compressible fluid is theoretically optimized by introducing pressure fluctuation. Turbulence level measurement experiments are carried out with the Mach number varied from 0.3 to 0.7 and the experimental data is processed by using algorithm of turbulence level before and after optimization. The results indicate that the magnitudes of turbulence level from the two methods are similar, but the variation tendency of turbulence level with Mach number obtained by using the optimized method is in accordance with the objective physical law. The uncertainty of turbulence level is obtained using Monte Carlo simulation, and the magnitude of the uncertainty is much smaller than that of the turbulence level. The results suggest that the turbulence level obtained using the optimized method could be regarded as the true values. The results proved the correctness of the turbulence level measurement technique after optimization and the feasibility of application of constant temperature hot-wire anemometer into turbulence level measurement in high speed wind tunnels.
Keywords: compressible fluid     turbulence level     overheat ratio     Monte Carlo simulation     uncertainty    

风洞试验是评估各类飞行器设计性能最主要、最直接的手段,即便数值模拟技术及模型飞行试验技术也在高速发展且日趋完善,进行必要的风洞试验仍是飞行器研发过程中不可或缺的环节。特别是跨超声速风洞,为多数飞行器巡航状态气动性能的试验研究提供了有效途径。

对风洞试验最重要的要求是正确模拟气流流过飞行器模型的状态并提供精确的试验数据,而优异的风洞流场品质是生产精确试验数据的前提[1]。风洞流场湍流度作为一项重要的动态流场品质,其量值可以很大程度影响风洞试验结果及其精确度,国内外学者很早便意识到了这一点,并开始了相关研究。Jones对于湍流度对平板边界层转捩的影响进行了试验研究,试验中平板边界层的转捩通过光学方法进行捕捉,当风洞试验段流场湍流度从0.7%变化到35%时,转捩发生位置随湍流度的提高而不断向上游方向移动[2],类似的研究还可见于文献[3-6]中。Liu等对于喷管出口处流场湍流度对射流发展及噪声特性的影响进行了研究,发现湍流度会对喷管的气动、声学特性产生影响[7],国内也有学者对于湍流度对气动特性的影响进行了研究[8-10]

由于风洞流场湍流度会对边界层转捩及飞行器的气动、声学、热学等特性产生影响,其对于各类风洞试验的结果均较为重要。为了量化评估风洞流场湍流度,国内外学者开展了大量对于湍流度测量技术的研究。Dryden等利用热线风速仪对低速风洞流场的速度脉动、湍流度、湍流尺度等湍流相关量进行了测量研究,初步建立并完善了利用热线风速仪对低速风洞流场湍流度进行测量的方法[11-13]。由于热线风速仪在低速不可压缩流中的响应关系式很明确(即King公式[14]),因此低速风洞流场湍流度的热线测量方法已被研究较为透彻并广泛应用于低速风洞湍流度测试中[15-16]。而在可压缩流中,热线风速仪的输出信号受当地流场速度、密度、温度的共同作用,其响应关系式尚不明确,因此其研究难度要远高于在不可压缩流中。以Stainback、Horstman等为代表的学者采用控制变量法对热线风速仪进行校准,通过大量的校准试验数据来求解速度、密度、总温的灵敏度系数,利用校准后的热线探针再对未知流场进行测量,进而求解湍流度[17-20]。然而以上校准方法可能会遇到求解方程过程中系数矩阵近似奇异而难以求解的情况,且校准需大量试验对热线探针寿命不利,因此该方法并没有得到广泛应用。还有学者采用激光多普勒测速技术、瑞利散射测速技术、粒子图像测速技术等光学测量方法对可压缩流湍流度进行直接测量,取得了一定的成果[21-24],但由于光学测量方法普遍频响不高,难以捕捉到速度脉动中的高频成分,因此无法准确评估湍流度。

综上所述,风洞流场湍流度测量方法在低速范围内已经较为成熟,但在高速可压缩流范围内还存在较多问题。本文完善了在研的变热线过热比湍流度测量方法[25],引入了压力脉动项以从理论上优化湍流度求解方法,进而更加准确评估高速风洞可压缩流湍流度。在马赫数Ma=0.3~0.7进行了湍流度测量试验,对比了优化前后湍流度求解方法所得湍流度结果,并利用蒙特卡洛模拟方法对湍流度的不确定度进行了求解。结果表明优化后的湍流度求解方法所得湍流度结果与前期试验结果量值相符,随马赫数的变化趋势更加符合客观物理规律,且不确定度量值远小于湍流度量值,验证了优化后方法的可行性,为高速风洞湍流度评估提供了参考。

1 湍流度求解方法优化 1.1 湍流度求解方法

由文献[25]中的式(47)可知,恒温热线风速仪在可压缩流中的响应关系式为

$ \frac{{\Delta E}}{E} = {F_{{\rm{CTA}}}}\frac{{\Delta m}}{m} - {G_{{\rm{CTA}}}}\frac{{\Delta {T_0}}}{{{T_0}}} $ (1)
 

式中:E为热线风速仪输出电压;m为热线探针测量点气体质量流量;T0为热线探针测量点气体总温;FCTAGCTA分别为恒温热线风速仪质量流量、总温灵敏度系数。

式(1)左右同时除以GCTA,定义$\theta=\frac{1}{G_{\mathrm{CTA}}} \cdot \frac{\Delta E}{E}$为响应函数,$r=\frac{F_{\mathrm{CTA}}}{G_{\mathrm{CTA}}}$为自变量,可得

$ \theta = \frac{{\Delta m}}{m}r - \frac{{\Delta {T_0}}}{{{T_0}}} $ (2)
 

对式(2)左右同时取均方值,可得

$ {\left( {\sqrt {\overline {{\theta ^2}} } } \right)^2} = \overline {{{\left( {\frac{{\Delta m}}{m}} \right)}^2}} {r^2} - 2\overline {\left( {\frac{{\Delta m}}{m}} \right)\left( {\frac{{\Delta {T_0}}}{{{T_0}}}} \right)} r + \overline {{{\left( {\frac{{\Delta {T_0}}}{{{T_0}}}} \right)}^2}} $ (3)
 

利用双曲线拟合方法对式(3)进行拟合可求解出质量流量脉动项与总温脉动项,进而求解出湍流度。但湍流度求解过程中由于忽略了压力脉动项以简化求解,因此存在一定的偏差。

1.2 湍流度求解方法优化的理论推导

为了更加准确求解流场湍流度,需对式(2)进行进一步处理。对于质量流量项,由质量流量定义可知:

$ \frac{{\Delta m}}{m} = \frac{{\Delta \left( {\rho U} \right)}}{{\rho U}} = \frac{{\Delta \rho }}{\rho } + \frac{{\Delta U}}{U} $ (4)
 

式中:ρU分别为热线探针测量点气体密度、速度。

对于总温项,由一维等熵关系式,有

$ {T_0} = T\left( {1 + \frac{{\gamma - 1}}{2}M{a^2}} \right) $ (5)
 

式中:T为热线探针测量点气体静温;γ为气体比热比。

对式(5)进行先取自然对数,再求偏导数的处理,可得

$ \begin{array}{*{20}{c}} {\frac{{\partial {T_0}}}{{{T_0}}} = \frac{{\partial T}}{T} + \frac{{\partial \left( {1 + \frac{{\gamma - 1}}{2}M{a^2}} \right)}}{{1 + \frac{{\gamma - 1}}{2}M{a^2}}} = }\\ {\frac{{\partial T}}{T} + \frac{{\left( {\gamma - 1} \right)Ma}}{{1 + \frac{{\gamma - 1}}{2}M{a^2}}}\partial Ma} \end{array} $ (6)
 

由马赫数定义,有

$ Ma = \frac{U}{{\sqrt {\gamma RT} }} $ (7)
 

式中:R为气体常数。

对式(7)求偏导数,可得

$ \begin{array}{l} \partial Ma = \partial \left( {\frac{U}{{\sqrt {\gamma RT} }}} \right) = \frac{{\sqrt {\gamma RT} \partial U - U\frac{{\sqrt {\gamma R} }}{{2\sqrt T }}\partial T}}{{\gamma RT}} = \\ \;\;\;\;\;\;\frac{U}{{\sqrt {\gamma RT} }}\left( {\frac{{\partial U}}{U} - \frac{1}{2} \cdot \frac{{\partial T}}{T}} \right) = Ma\left( {\frac{{\partial U}}{U} - \frac{1}{2} \cdot \frac{{\partial T}}{T}} \right) \end{array} $ (8)
 

将式(8)代入式(6),可得

$ \begin{array}{l} \frac{{\partial {T_0}}}{{{T_0}}} = \frac{{\partial T}}{T} + \frac{{\left( {\gamma - 1} \right)M{a^2}}}{{1 + \frac{{\gamma - 1}}{2}M{a^2}}}\left( {\frac{{\partial U}}{U} - \frac{1}{2} \cdot \frac{{\partial T}}{T}} \right) = \\ \;\;\;\;\;\;\frac{1}{{1 + \frac{{\gamma - 1}}{2}M{a^2}}} \cdot \frac{{\partial T}}{T} + \frac{{\left( {\gamma - 1} \right)M{a^2}}}{{1 + \frac{{\gamma - 1}}{2}M{a^2}}} \cdot \frac{{\partial U}}{U} \end{array} $ (9)
 

用Δ代替$\partial $(均为小量),整理可得

$ \frac{{\Delta {T_0}}}{{{T_0}}} = \alpha \frac{{\Delta T}}{T} + \beta \frac{{\Delta U}}{U} $ (10)
 

式中:

$ \alpha = \frac{1}{{1 + \frac{{\gamma - 1}}{2}M{a^2}}} $ (11)
 
$ \beta = \frac{{\left( {\gamma - 1} \right)M{a^2}}}{{1 + \frac{{\gamma - 1}}{2}M{a^2}}} $ (12)
 

将式(4)、式(10)代入式(2),可得

$ \theta = \left( {\frac{{\Delta \rho }}{\rho } + \frac{{\Delta U}}{U}} \right)r - \left( {\alpha \frac{{\Delta T}}{T} + \beta \frac{{\Delta U}}{U}} \right) $ (13)
 

式(13)中变量过多,不利于湍流度的求解,对密度、静温项进行继续处理。对于密度项,有等熵过程压力与密度的关系式[26]

$ p = C{\rho ^\gamma } $ (14)
 

式中:p为气体静压;C为常数。

对式(14)进行先取自然对数,再求偏导数的处理,并用Δ代替$\partial $(均为小量),整理可得

$ \frac{{\Delta \rho }}{\rho } = \frac{1}{\gamma } \cdot \frac{{\Delta p}}{p} $ (15)
 

对于静温项,有理想气体状态方程:

$ p = \rho RT $ (16)
 

对式(16)进行先取自然对数,再求偏导数的处理,并用Δ代替$\partial $(均为小量),整理可得

$ \frac{{\Delta p}}{p} = \frac{{\Delta \rho }}{\rho } + \frac{{\Delta T}}{T} $ (17)
 

联立式(15)、式(17),可得

$ \frac{{\Delta T}}{T} = \frac{{\gamma - 1}}{\gamma } \cdot \frac{{\Delta p}}{p} $ (18)
 

将式(15)、式(18)代入式(13),整理可得

$ \begin{array}{l} \theta = \left( {\frac{1}{\gamma } \cdot \frac{{\Delta p}}{p} + \frac{{\Delta U}}{U}} \right)r - \left( {\alpha \frac{{\gamma - 1}}{\gamma } \cdot \frac{{\Delta p}}{p} + \beta \frac{{\Delta U}}{U}} \right) = \\ \;\;\;\;\;\left( {\frac{1}{\gamma } \cdot \frac{{\Delta p}}{p} + \frac{{\Delta U}}{U}} \right)r - \beta \left( {\frac{1}{{\gamma M{a^2}}} \cdot \frac{{\Delta p}}{p} + \frac{{\Delta U}}{U}} \right) \end{array} $ (19)
 

由式(19)可知,压力脉动项与速度脉动项系数的量值相近,因此这两项在响应关系式中对响应函数的贡献量相近,并不能通过简单的忽略掉压力脉动项来简化求解。

对式(19)左右同时取均方值,可得

$ \begin{array}{l} {\left( {\sqrt {\overline {{\theta ^2}} } } \right)^2} = \\ \;\;\;\;\;\left[ {\overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} + \frac{2}{\gamma }\overline {\frac{{\Delta U}}{U} \cdot \frac{{\Delta p}}{p}} + \frac{1}{{{\gamma ^2}}}\overline {{{\left( {\frac{{\Delta p}}{p}} \right)}^2}} } \right]{r^2} - \\ \;\;\;\;\;2\beta r\left[ {\overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} + \frac{1}{\gamma }\left( {1 + \frac{1}{{M{a^2}}}} \right)\overline {\frac{{\Delta U}}{U} \cdot \frac{{\Delta p}}{p}} + } \right.\\ \;\;\;\;\;\left. {\frac{1}{{{\gamma ^2}M{a^2}}}\overline {{{\left( {\frac{{\Delta p}}{p}} \right)}^2}} } \right] + {\beta ^2}\left[ {\overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} + } \right.\\ \;\;\;\;\;\left. {\frac{2}{{\gamma M{a^2}}}\overline {\frac{{\Delta U}}{U} \cdot \frac{{\Delta p}}{p}} + \frac{1}{{{\gamma ^2}M{a^4}}}{{\left( {\frac{{\Delta p}}{p}} \right)}^2}} \right] \end{array} $ (20)
 

对比式(3)、式(20),可得

$ \overline {{{\left( {\frac{{\Delta m}}{m}} \right)}^2}} = \overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} + \frac{2}{\gamma }\overline {\frac{{\Delta U}}{U} \cdot \frac{{\Delta p}}{p}} + \frac{1}{{{\gamma ^2}}}\overline {{{\left( {\frac{{\Delta p}}{p}} \right)}^2}} $ (21)
 
$ \begin{array}{l} \overline {\frac{{\Delta m}}{m} \cdot \frac{{\Delta {T_0}}}{{{T_0}}}} = \beta \left[ {\overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} + } \right.\\ \;\;\;\;\;\;\left. {\frac{1}{\gamma }\left( {1 + \frac{1}{{M{a^2}}}} \right)\overline {\frac{{\Delta U}}{U} \cdot \frac{{\Delta p}}{p}} + \frac{1}{{{\gamma ^2}M{a^2}}}\overline {{{\left( {\frac{{\Delta p}}{p}} \right)}^2}} } \right] \end{array} $ (22)
 
$ \begin{array}{l} \overline {{{\left( {\frac{{\Delta {T_0}}}{{{T_0}}}} \right)}^2}} = {\beta ^2}\left[ {\overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} + } \right.\\ \;\;\;\;\;\left. {\frac{2}{{\gamma M{a^2}}}\overline {\frac{{\Delta U}}{U} \cdot \frac{{\Delta p}}{p}} + \frac{1}{{{\gamma ^2}M{a^4}}}\overline {{{\left( {\frac{{\Delta p}}{p}} \right)}^2}} } \right] \end{array} $ (23)
 

联立式(21)~式(23),可得

$ \left[ {\begin{array}{*{20}{c}} {\overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} }\\ {\overline {\frac{{\Delta U}}{U} \cdot \frac{{\Delta p}}{p}} }\\ {\overline {{{\left( {\frac{{\Delta p}}{p}} \right)}^2}} } \end{array}} \right] = \mathit{\boldsymbol{D}} \cdot \mathit{\boldsymbol{X}} $ (24)
 

式中:系数矩阵D和矩阵X分别为

$ \mathit{\boldsymbol{D}} = {\left[ {\begin{array}{*{20}{c}} 1&{\frac{2}{\gamma }}&{\frac{1}{{{\gamma ^2}}}}\\ \beta &{\frac{\beta }{\gamma }\left( {1 + \frac{1}{{M{a^2}}}} \right)}&{\frac{\beta }{{{\gamma ^2}M{a^2}}}}\\ {{\beta ^2}}&{\frac{{2{\beta ^2}}}{{\gamma M{a^2}}}}&{\frac{{{\beta ^2}}}{{{\gamma ^2}M{a^4}}}} \end{array}} \right]^{ - 1}} $ (25)
 
$ \mathit{\boldsymbol{X}} = \left[ {\begin{array}{*{20}{c}} {\overline {{{\left( {\frac{{\Delta m}}{m}} \right)}^2}} }\\ {\overline {\frac{{\Delta m}}{m} \cdot \frac{{\Delta {T_0}}}{{{T_0}}}} }\\ {\overline {{{\left( {\frac{{\Delta {T_0}}}{{{T_0}}}} \right)}^2}} } \end{array}} \right] $ (26)
 

分析式(3)可知,等式右端的3个未知项(即为矩阵X中的3个未知元素)均可通过变热线过热比方法利用双曲线拟合方法进行求解[25];而当马赫数Ma确定时,式(24)中的系数矩阵D为常数矩阵。因此,可先利用双曲线拟合方法求解质量流量项均方值、总温项均方值及其交叉项,再根据式(24)求解某个确定的马赫数Ma情况下的流场湍流度:

$ Tu = \sqrt {\overline {{{\left( {\frac{{\Delta U}}{U}} \right)}^2}} } $ (27)
 
2 湍流度测量试验及结果分析 2.1 风洞及测量仪器

本次湍流度测量试验在中国空气动力研究与发展中心的探针校准风洞中进行,该风洞采用直吹射流式布局,其主要技术参数如表 1所示,结构示意图如图 1所示。所采用的主要测量仪器为IFA300型恒温热线风速仪及一支TSI单丝热线探针。

表 1 探针校准风洞主要技术参数 Table 1 Specifications of probe calibration wind tunnel
技术参数 数值
试验段喷管出口截面尺寸Ø/mm 50
马赫数调节范围 0.05~1
总压调节范围/MPa 0.05~0.25
总温调节范围/K 278~330
迎角调节范围/(°) -30~30
图 1 探针校准风洞示意图 Fig. 1 Schematic of probe calibration wind tunnel
2.2 试验结果分析

在上述探针校准风洞中进行湍流度测量试验,试验马赫数范围约为Ma=0.3~0.7,每间隔约0.1取一个马赫数状态进行测量,每个状态下改变10个热线风速仪过热比,待系统稳定后进行数据采集。对热线风速仪采集到的电压信号进行以10 kHz为阈值的低通滤波处理,然后对式(3)中的自变量及函数进行求解,各个马赫数下数据如表 2所示。

表 2 式(3)中自变量、函数求解结果 Table 2 Calculation results of variables and functions in Eq.(3)
Ma=0.330 Ma=0.420 Ma=0.525 Ma=0.627 Ma=0.719
r $\sqrt{\theta^{2}} / 10^{-4}$ r $\sqrt{\theta^{2}} / 10^{-4}$ r $\sqrt{\theta^{2}} / 10^{-4}$ r $\sqrt{\theta^{2}} / 10^{-4}$ r $\sqrt{\theta^{2}} / 10^{-4}$
0.034 7.53 0.034 5.95 0.034 6.23 0.034 5.59 0.033 7.56
0.053 6.57 0.053 5.43 0.052 5.27 0.052 4.72 0.051 4.55
0.073 4.49 0.073 4.64 0.073 3.61 0.073 3.81 0.071 3.68
0.095 4.25 0.096 3.66 0.119 4.13 0.119 3.68 0.116 3.97
0.119 5.60 0.121 5.04 0.146 4.37 0.146 3.57 0.142 4.21
0.146 5.19 0.148 4.81 0.176 5.17 0.177 3.84 0.171 4.83
0.177 5.88 0.179 5.78 0.210 5.90 0.212 4.36 0.205 5.32
0.211 6.33 0.215 6.73 0.250 7.07 0.252 5.16 0.243 6.27
0.251 7.66 0.257 7.65 0.638 15.3 0.659 12.5 0.603 12.2
0.640 22.5 0.681 21.2 1.290 32.4 1.399 27.5 1.165 24.5

利用表 2中的数据进行双曲线拟合,进而求解矩阵X中的3个未知元素,再利用式(24)~式(27)对湍流度进行求解。各个马赫数下双曲线拟合结果如图 2所示,各个马赫数下湍流度值、拟合优度值及利用优化前湍流度求解方法计算所得的湍流度值Tu表 3所示。

图 2 双曲线拟合结果 Fig. 2 Results of hyperbola fitting
表 3 湍流度、拟合优度计算结果 Table 3 Calculation results of turbulence level and goodness of fit
Ma 拟合优度 Tu/%
优化后 优化前
0.330 0.997 4 0.355 0.469
0.420 0.998 6 0.357 0.365
0.525 0.999 5 0.329 0.269
0.627 0.999 5 0.306 0.208
0.719 0.996 0 0.425 0.221

表 3中计算结果可知,拟合优度全都在0.99以上,说明利用双曲线拟合方法对优化后的湍流度求解方法所得的计算结果进行拟合的效果较好。湍流度求解方法优化前后湍流度计算结果对比如图 3所示。由图可知,优化前的湍流度求解方法所得的湍流度随马赫数的提高呈现下降趋势,这与客观物理规律及部分文献测试结果[27-28]相悖;而优化后的湍流度求解方法所得的湍流度随马赫数的提高呈现先平稳、后上升趋势,这与客观物理规律及文献测试结果基本相符,说明优化后的湍流度求解方法能够较为准确地求得高速风洞可压缩流湍流度值。

图 3 优化前后湍流度对比 Fig. 3 Contrast of turbulence level before and after optimization
3 湍流度不确定度的评估

为了合理评估单次湍流度测量试验结果是否能够较为准确代表风洞湍流度真实值,需要对湍流度测量试验结果的不确定度进行评估。由于湍流度是采用拟合方法进行求解得到的,因此采用传统的不确定度传递方法进行求解较为困难,为避免通过大量湍流度测量试验对湍流度测量不确定度进行评估,考虑采用蒙特卡洛模拟方法评估湍流度的不确定度[29]。蒙特卡洛模拟方法的具体步骤如下:

1) 构造概率统计模型。在各个马赫数下,利用双曲线进行拟合时,可利用计算机进行仿真试验生成大量待拟合的散点数据,待拟合的散点数据到湍流度测量试验结果散点数据(后文简称“已知散点”)的纵向距离符合以已知散点的纵向位置为均值μ、所有已知散点到拟合曲线的纵向距离均值的1/3为标准差σ的正态分布N(μ, σ2)(即符合“3σ”原则)[30]

2) 模型的随机抽样。利用MATLAB软件生成符合正态分布N(μ, σ2)的1 000组随机数,将已知散点与生成的1 000组随机数叠加,即为待拟合的散点数据。

3) 确定评估值。利用双曲线拟合方法对生成的1 000组待拟合的散点数据进行拟合,得到1 000组湍流度拟合结果,并对湍流度的不确定度进行求解,即

$ u = \sqrt {\frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} } $ (28)
 

式中:u为不确定度;i为计数变量;n为湍流度拟合结果总数,此处n=1 000;xi为第i组湍流度拟合结果;x为1 000组湍流度拟合结果均值。

各个马赫数下湍流度求解的平均值及对应的不确定度如表 4所示。

表 4 湍流度均值及不确定度计算结果 Table 4 Calculation results of mean turbulence level and uncertainty
Ma 湍流度均值/% 不确定度/%
0.330 0.355 0.003
0.420 0.357 0.002
0.525 0.329 0.005
0.627 0.306 0.006
0.719 0.425 0.011

表 4中不确定度数据可知,在试验马赫数范围内,马赫数较低时,湍流度不确定度为0.001%量级,马赫数在0.7左右时,不确定度最高在0.01%左右,湍流度的不确定度量值远小于湍流度量值,说明单次湍流度测量试验结果即能较为准确代表风洞流场湍流度真实值。

4 结论

1) 针对在研的变热线过热比湍流度测量方法忽略压力脉动项的问题进行了完善,从理论上优化了利用恒温热线风速仪对可压缩流湍流度进行测量的方法。

2) 在马赫数Ma=0.3~0.7进行了湍流度测量试验,利用优化后的湍流度求解方法对湍流度进行了求解,并与优化前的求解结果进行了对比。结果表明优化后的湍流度求解方法所得的湍流度更加符合客观物理规律及部分文献测试结果,验证了优化后方法的有效性。

3) 利用蒙特卡洛方法对湍流度的不确定度进行了求解,不确定度量值远小于湍流度量值,验证了湍流度测量结果的稳定性。

参考文献
[1] 恽起麟. 实验空气动力学[M]. 北京: 国防工业出版社, 1991: 173-177.
YUN Q L. Experimental aerodynamics[M]. Beijing: National Defense Industry Press, 1991: 173-177. (in Chinese)
[2] JONES R A. An experimental study at a Mach number of 3 of the effect of turbulence level and sandpaper type roughness on transition on a flat plate: NASA-MEMO-2-2-59L[R]. Washington, D. C.: NASA, 1959.
[3] 卞于中, 唐敏中, 何克敏, 等. 湍流度和雷诺数对附面层转握位置的影响[J]. 流体力学实验与测量, 1997, 11(1): 25-29.
BIAN Y Z, TANG M Z, HE K M, et al. Effect of turbulivity and Reynolds number on boundary layer transition position[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(1): 25-29. (in Chinese)
Cited By in Cnki (6) | Click to display the text
[4] 何克敏, 白存儒, 郭渠渝, 等. 较低湍流度范围湍流度对风洞试验结果的影响[J]. 流体力学实验与测量, 1997, 11(3): 11-17.
HE K M, BAI C R, GUO Q Y, et al. The effect of turbulence on wind tunnel results in the range of low turbulence[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(3): 11-17. (in Chinese)
Cited By in Cnki (4) | Click to display the text
[5] 白存儒, 何克敏, 郭渠渝, 等. 变湍流度时翼型边界层及近场尾流的法向湍流特性初步试验研究[J]. 流体力学实验与测量, 1998, 12(4): 31-35.
BAI C R, HE K M, GUO Q Y, et al. Experimental investigation of normal turbulence characteristics of boundary layer and near wake of an airfoil at different turbulence level[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4): 31-35. (in Chinese)
Cited By in Cnki | Click to display the text
[6] 张骞, 陈连忠, 艾邦成. 电弧加热流场湍流度对尖锥边界层转捩影响的研究[J]. 实验流体力学, 2010, 24(6): 57-60.
ZHANG Q, CHEN L Z, AI B C. Sharp cone boundary layer transition research in arc heated flow field influenced by turbulence[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6): 57-60. (in Chinese)
Cited By in Cnki (2) | Click to display the text
[7] LIU J, KAILASANATH K, BORIS J P, et al. Effect of initial turbulence level on an underexpanded supersonic jet[J]. AIAA Journal, 2013, 51(3): 741-744.
Click to display the text
[8] 白存儒, 屠兴, 郭渠渝, 等. 湍流度对翼身组合体大攻角气动特性的影响研究[J]. 流体力学实验与测量, 1999, 13(3): 25-31.
BAI C R, TU X, GUO Q Y, et al. The research of effect of flow turbulence on the aerodynamic characteristics of a wing-body combination at high angles of attack[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(3): 25-31. (in Chinese)
Cited By in Cnki (1) | Click to display the text
[9] 李峰, 白存儒, 郭伟, 等. 湍流度对飞行器模型大迎角气动特性影响的初步研究[J]. 实验流体力学, 2006, 20(3): 45-52.
LI F, BAI C R, GUO W, et al. Primal research of the effect of flow turbulence on aerodynamic characteristics of a aircraft model at high angles of attack[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3): 45-52. (in Chinese)
Cited By in Cnki (2) | Click to display the text
[10] 阎东, 吕中宾, 林巍, 等. 湍流度对覆冰导线气动力特性影响的试验研究[J]. 高压电技术, 2014, 40(2): 450-457.
YAN D, LV Z B, LIN W, et al. Experimental study on effect of turbulence intensity on the aerodynamic characteristics of iced conductors[J]. High Voltage Engineering, 2014, 40(2): 450-457. (in Chinese)
Cited By in Cnki (5) | Click to display the text
[11] DRYDEN H L, KUETHE A M. The measurement of fluctuations of air speed by the hot-wire anemometer: NACA-REPORT-320[R]. Washington, D.C.: National Advisory Committee for Aeronautics, 1930.
[12] DRYDEN H L, KUETHE A M. Effect of turbulence in wind tunnel measurements: NACA-REPORT-342[R]. Washington, D.C.: National Advisory Committee for Aeronautics, 1931.
[13] DRYDEN H L, SCHUBAUER G B, MOCK W C, et al. Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres: NACA-REPORT-581[R]. Washington, D.C.: National Advisory Committee for Aeronautics, 1937.
[14] KING V L. On the convection of heat from small cylinders in a stream of fluid:Determination of the convection constants of small platinum wires with application to hot-wire anemometry[J]. Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Science, 1914, 214: 373-432.
Click to display the text
[15] DEMIN V S, MORIN O V, POLYAKOV N F, et al. Measurement of low turbulence levels with a thermoanemometer: NASA-TM-75282[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1978.
[16] 朱博, 汤更生. 声学风洞流场低湍流度及频谱测量研究[J]. 实验流体力学, 2015, 29(4): 58-64.
ZHU B, TANG G S. Low turbulence intensity and spectrum measurement research in aeroacoustic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 58-64. (in Chinese)
Cited By in Cnki (2) | Click to display the text
[17] STAINBACK P C, JOHNSON C B. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow: AIAA-1983-0384[R]. Reston, VA: AIAA, 1983.
[18] HORSTMAN C C, ROSE W C. Hot-wire anemometry in transonic flow: NASA-TM-X-62495[R]. Washington, D.C.: National Aeronautics and Space Administration, 1976.
[19] JONES G S, STAINBACK P C, HARRIES C D, et al. Flow quality measurements for the Langley 8-foot transonic pressure tunnel LFC experiment: AIAA-1989-0150[R]. Reston, VA: AIAA, 1989.
[20] JONES G S, STAINBACK P C, NAGABUSHANA K A. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows: AIAA-1992-4007[R]. Reston, VA: AIAA, 1992.
[21] LAU J C, MORRIS P J, FISHER M J. Turbulence measurements in subsonic and supersonic jets using a laser velocimeter: AIAA-1976-348[R]. Reston, VA: AIAA, 1976.
[22] SEASHOLTZ R G, PANDA J, ELAM K A. Rayleigh scattering diagnostic for dynamic measurement of velocity fluctuations in high speed jets: AIAA-2001-0847[R]. Reston, VA: AIAA, 2001.
[23] 杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3): 82-86.
YANG F R, CHEN L, YAN B, et al. Measurement of turbulent velocity fluctuations in transonic wind tunnel using interferometric rayleigh scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82-86. (in Chinese)
Cited By in Cnki | Click to display the text
[24] ARRINGTON E A, PASTOR C M, SIMERLY S R. Aerodynamic testing capabilities of the NASA Glenn 10-by 10-foot supersonic wind tunnel: AIAA-2011-1066[R]. Reston, VA: AIAA, 2011.
[25] 杜钰锋, 林俊, 马护生, 等. 可压缩流湍流度变热线过热比测量方法[J]. 航空学报, 2017, 38(11): 121236.
DU Y F, LIN J, MA H S, et al. Measurement technique of turbulence level in compressible fluid by changing overheat ratio of hot-wire anemometer[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121236. (in Chinese)
Cited By in Cnki | Click to display the text
[26] 潘锦珊, 单鹏. 气体动力学基础[M]. 北京: 国防工业出版社, 2012: 56-64.
PAN J S, SHAN P. Fundamentals of gasdynamics[M]. Beijing: National Defense Industry Press, 2012: 56-64. (in Chinese)
[27] STAINBACK P C, JOHNSON C B. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow: AIAA-1983-0384[R]. Reston, VA: AIAA, 1983.
[28] JONES G S, STAINBACK P C, HARRIES C D, et al. Flow quality measurements for the Langley 8-foot transonic pressure tunnel LFC experiment: AIAA-1989-0150[R]. Reston, VA: AIAA, 1989.
[29] 杨建. 蒙特卡洛法评定测量不确定度中相关随机变量的MATLAB实现[J]. 计测技术, 2012, 32(4): 51-54.
YANG J. The MATLAB realization of correlated random variable in evaluation of measurement uncertainty based on Monte Carlo method[J]. Metrology & Measurement Technology, 2012, 32(4): 51-54. (in Chinese)
[30] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京: 高等教育出版社, 2008: 42-50.
SHENG Z, XIE S Q, PAN C Y. Probability and mathematical statistics[M]. Beijing: Higher Education Press, 2008: 42-50. (in Chinese)
http://dx.doi.org/10.7527/S1000-6893.2019.23067
中国航空学会和北京航空航天大学主办。
0

文章信息

杜钰锋, 林俊, 王勋年, 熊能
DU Yufeng, LIN Jun, WANG Xunnian, XIONG Neng
变热线过热比可压缩流湍流度测量方法优化
Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer
航空学报, 2019, 40(12): 123067.
Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 123067.
http://dx.doi.org/10.7527/S1000-6893.2019.23067

文章历史

收稿日期: 2019-04-09
退修日期: 2019-06-06
录用日期: 2019-08-19
网络出版时间: 2019-08-21 14:38

相关文章

工作空间