文章快速检索  
  高级检索
双目视觉绳系支撑飞行器模型位姿动态测量
周凡桂, 王晓光, 高忠信, 林麒     
厦门大学 航空航天学院, 厦门 361005
摘要: 绳牵引并联机器人(WDPR)为风洞试验提供了一种新型支撑方式,可用于多/六自由度风洞复杂动态试验。针对该支撑下飞行器模型的大范围运动,发展了一种基于双目视觉的模型位姿动态测量方法。首先,设计了一种编码合作标志点,合理布置于模型表面,通过图像处理消除绳对标志点成像干扰,进行标志点三维重构;然后,利用绝对定姿算法求解相对位姿初值,且给出了理论误差分析,并基于双目相机重投影误差构建李代数下的无约束最小二乘优化问题,采用L-M算法进行位姿优化;最后,采用该测量系统分别进行了静态和动态精度验证试验,以及大迎角俯仰振荡等3种单/多自由度典型运动轨迹测量。试验数据显示,静态角度和位移测量精度分别优于0.02°/0.02 mm;动态测量时角度精度可达到0.1°量级,位移平均误差为0.4 mm。研究结果表明:设计的双目视觉测量系统是有效可行的,可为后续风洞试验的实际应用提供支持。
关键词: 风洞试验     绳牵引并联机器人     双目视觉     动态测量     大迎角    
Binocular vision-based measurement of dynamic motion for aircraft model suspended by wire system
ZHOU Fangui, WANG Xiaoguang, GAO Zhongxin, LIN Qi     
School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
Abstract: The Wire-Driven Parallel Robot (WDPR) provides a new supporting method for wind tunnel tests, and it can be used for complex and dynamic multi/six-DoF motion in wind tunnel tests. Aiming at the large-scale dynamic motion of aircraft model suspended by WDPR, a position and attitude dynamic measurement method for aircraft model based on binocular vision technique is developed. First, a type of encoded round marker is designed to be affixed on the model surface. Following the reconstruction of markers' 3D coordinates, the interference of cables to markers imaging is eliminated by image processing. Second, the initial value of relative pose is estimated by the absolute orientation algorithm, and a theoretical error analysis is given. Then the optimal result is achieved through building an unconstrained least squares optimization problem in Lie Algebra based on re-projection error, which is solved by the L-M optimization algorithm. Finally, the static and dynamic test validations and three typical dynamic single/multi-DoF motions for aircraft model such as heave/pitch oscillation are conducted. The results indicate that the precision of static angle and displacement measurement is better than 0.02°/0.02 mm respectively, and that of dynamic angle measurement can achieve the 0.1° order, and the absolute error of the dynamic displacement is 0.4 mm. The research conducted shows that the proposed binocular vision measurement system is effective and feasible, and it could provide sufficient support for the practical application in the follow-up wind tunnel tests.
Keywords: wind tunnel test     wire-driven parallel robot     binocular vision     dynamic measurement     high angle of attack    

风洞试验是飞行器设计研发过程中气动性能评估和气动布局验证的重要手段,对新型飞行器的研制具有重要意义。风洞试验中,飞行器模型的位置和姿态(简称位姿)精度直接影响气动参数的精准度,因此,对于风洞静态/动态试验,要求对飞行器模型实现较高精度的位姿测量[1]

目前已有多种基于不同原理和技术的风洞模型姿态测量方法,如传统的测量方式,风洞角度机构、加速度迎角传感器以及光学测角仪等,但其作用有限,难以较好地满足风洞动态试验的要求[2-3]。摄影测量是一种光学测量技术,由于其具有非接触性、高精度、干扰小等优点,非常适合用于风洞模型测量,已在美国宇航局和其他国内外研究机构的风洞试验中广泛应用[2-10]。此外,Jones和Lunsford利用双目视觉与合作标志点对高超声速风洞模型姿态变化进行静态测量,精度优于0.1°[4];Lambert等使用VICON商业运动捕捉系统实现了绳牵引飞行器模型六自由度小范围运动的位姿测量[5];张征宇等利用双目视觉配合标志点对风洞弹体模型迎角进行静态测量[6],精度优于0.01°,但该法仅局限于弹体俯仰角静态测量;刘巍等基于双目视觉理论提出一种利用彩色自发光编码标志点的位姿测量方法[7],实现风洞副油箱模型位姿动态测量,取得较好效果。对常规风洞试验而言,现有的位姿测量方法已基本满足要求,然而针对复杂风洞试验的模型位姿动态测量还有待继续深入研究。

绳牵引并联机器人(Wire-Driven Parallel Robot, WDPR)是一种新型机构,其经由驱动、传动部分,通过调整绳索长度可实现模型位姿的控制,为风洞试验提供了一种新型支撑方式[11-12]。绳牵引并联支撑具有较好的动态性能,可为多种风洞复杂动态试验提供稳定支撑。考虑到双目测量具有精度高、组合视场大且稳定性高等优点[13-14],因此为提高动态试验下飞行器模型的闭环控制精度,拟采用双目视觉实现模型的大范围位姿高精度动态测量。

本文首先对绳牵引并联支撑系统进行简要描述;其次,详细介绍利用双目视觉实现绳牵引并联支撑飞行器模型的位姿动态测量方案,并对测量系统的静态和动态测量精度进行验证;最后,以标准动态模型(Standard Dynamic Model,SDM)为实际测量对象,在绳牵引并联支撑样机上对风洞试验3种典型运动进行实际动态测量,并进行误差分析。

1 绳牵引并联机器人支撑系统简介

绳牵引并联机器人支撑系统原理如图 1所示,其具体包含4个部分:①伺服与运动控制子系统,采用上位机、可编程多轴运动控制卡、伺服电机、驱动器等,结合鲁棒控制方法,对模型的运动轨迹实现高精度控制;②机械传动子系统,采用滚珠丝杠及导向滑轮等组件,实现从驱动部分到飞行器模型位姿之间的运动传递;③位姿测量子系统,采用视觉传感器,实现飞行器模型位姿的动态测量;④绳拉力和气动力测量子系统,用于实现绳拉力和气动力的实时监测。

图 1 绳牵引并联机器人支撑系统原理示意图 Fig. 1 Principle illustration of WDPR suspension system

系统坐标系定义如图 1所示,其中:Owxwywzw表示静坐标系,Omxmymzm表示飞行器模型坐标系,Ocxcyczc表示相机坐标系;风洞坐标系与该支撑系统下零位姿状态的飞行器模型坐标系重合,以模型质心为原点,x轴与飞行器机身轴线平行,指向与来流方向相反;y轴指向翼展右方向;z轴垂直向下。风洞坐标系为静坐标系,而飞行器模型坐标系为动坐标系,此时模型俯仰方向姿态角即为迎角。

2 模型位姿测量方案

拟采用双目视觉实现绳牵引并联支撑模型复杂动态运动下的位姿测量。测量方案整体示意图如图 2所示。具体以实际测量对象SDM标模尺寸外观为依据,设计了一种编码合作标志点,以实现快速立体匹配;由三角测量原理对标志点三维重构,使用绝对定姿算法初步估计模型位姿,并基于双目重投影误差构建李代数下的无约束最小二乘优化问题,进一步提高测量结果精度。图中Rcmtcm分别表示相机坐标系与飞行器模型坐标系之间的旋转矩阵和位移向量。

图 2 双目视觉测量方案示意图 Fig. 2 Illustration of binocular vision measurement scheme
2.1 标志点设计与布置

双目立体视觉特征匹配过程的复杂算法极大地增加了双目位姿估计的时间损耗,降低了系统的实时性[15-16]。这里,根据实际测量对象SDM的外观尺寸,设计了一种如图 3所示的编码合作标志点,可通过计算定位圆周围编码圆的个数来对标志点进行解码。

图 3 编码合作标志点 Fig. 3 Encoded markers

位姿测量过程中,利用图像处理算法对左右相机成像的编码标志点解码,可在数据处理层面迅速实现标志点的立体匹配,如图 4所示,这样避免了立体匹配复杂算法的耗时,有效提升了实时性。

图 4 编码标志点识别与快速匹配 Fig. 4 Encoded markers recognition and fast matching

根据位姿解算需求,编码标志点可合理布置于模型表面,其中一种布置方式如图 5所示。布置标志点时需注意,模型运动过程中至少要有3个标志点可同时双目成像,否则无法实现位姿解算。利用高精度三坐标测量仪对标志点在模型坐标系下的三维坐标进行标定。

图 5 编码标志点布置方式 Fig. 5 Layout of encoded markers
2.2 标志点识别与三维重构

考虑到相机内参对标志点特征提取精度的影响,首先需要进行相机标定。这里采用传统标定方法,可得投影映射:

$ s\mathit{\boldsymbol{u}} = \mathit{\boldsymbol{Kp}} $ (1)
 

式中:s为尺度因子;u为空间点成像二维像素坐标;p为相机坐标系下的三维空间点;K为相机内参矩阵。

获取原始图像后,需对其进行畸变矫正和立体校正,以及对标志点进行特征提取与解码。在驱动飞行器模型做各种运动过程中,会出现牵引绳遮挡标志点成像的情况,如图 6(a)所示,由于牵引绳遮挡,标志点图像被分割成2个区域,影响成像质量,导致无法正确特征提取与解码。

图 6 绳对标志点成像干扰及图像处理结果 Fig. 6 Interference of cables to markers imaging and image processing results

形态学闭运算可弥合图像较窄的间断,恢复标志点成像的整体性,其集合运算具体可表示为[17]

$ \left\{ \begin{array}{l} R \cdot S = \left( {R \oplus S} \right) \ominus S\\ R \oplus S = \left\{ {t\left| {R \cap {{\left( {\hat S} \right)}_t} \ne \emptyset } \right.} \right\}\\ R \ominus S = \left\{ {t\left| {{{\left( {\hat S} \right)}_t} \subseteq R} \right.} \right\} \end{array} \right. $ (2)
 

式中:S为结构元素;R为待处理图像区域;(Ŝ)tS原点在t像素时结构元素的转置;Ø表示空集;符号·、⊕、⊖分别表示集合的闭运算、膨胀与腐蚀操作。

闭运算先通过膨胀操作弥合黑色间断,恢复标志点成像区域的整体性,如图 6(b)所示;再通过腐蚀操作还原标志点成像区域尺寸,如图 6(c)所示;最后利用灰度质心法即可得到标志点成像区域中心像素坐标。标志点解码只需正确识别编码圆数量即可,对图 6(a)中的标志点成像区域均值滤波,结果如图 6(d)所示。黑色间断的灰度值增强,同时编码圆近圆心区域灰度值没有改变,使用较低阈值图像分割,即可正确识别编码圆的个数,实现标志点正确解码,如图 6(e)所示,该标志点为6号标志点。

在获取标志点匹配对之后,基于视差与三角测量原理,如图 7所示,可对标志点p进行基于左相机坐标系下坐标的三维重构。图中:cr表示像素坐标系变量,(c, r)与(u, v)相对应;下标l、r代表左、右相机。

图 7 双目立体视觉三维测量原理 Fig. 7 3D measurement principle of binocular vision

根据相似三角形关系,可得到标志点在左相机坐标系下的三维坐标为

$ x = \frac{b}{d} \cdot {u_1},y = \frac{b}{d} \cdot {v_1},z = \frac{b}{d} \cdot f $ (3)
 

式中:f为光学镜头的焦距;b为双目视觉基线,其数值等于左右相机投影中心之间的距离;(u, v)为标志点投影在立体校正后左右成像平面坐标系上的坐标;d=ulur为视差。

2.3 位姿初算

飞行器模型位姿求解的本质是确定当前时刻飞行器模型坐标系与风洞坐标系之间的相对变换关系。而双目视觉得到的是左相机坐标系与模型坐标系之间的变换关系,飞行器模型位姿的计算表达式为

$ {\mathit{\boldsymbol{T}}_t} = {\left( {\mathit{\boldsymbol{T}}_{{\rm{cm}}}^0} \right)^{ - 1}}\mathit{\boldsymbol{T}}_{{\rm{cm}}}^t,\mathit{\boldsymbol{T}} = \left[ {\begin{array}{*{20}{c}} \mathit{\boldsymbol{R}}&\mathit{\boldsymbol{t}}\\ 0&1 \end{array}} \right] $ (4)
 

式中:T表示位姿变换的齐次矩阵,由旋转矩阵R和位移向量t组成;Tt为飞行器模型位姿变化的齐次矩阵;Tcm0Tcmt分别对应初始时刻和当前时刻飞行器模型与左相机之间相对位姿的齐次变换矩阵。

双目视觉位姿测量可采用绝对定姿算法实现飞行器模型与左相机相对位姿的快速计算[18-19]。该算法核心是利用2个坐标系中若干匹配点对的信息来计算坐标系相对关系,最少需要3个不共线标志点对信息实现相对位姿估算。假设已知3个标志点p1p2p3在左相机坐标系Ocxyz和飞行器坐标系Omxyz下的坐标分别为(xci, yci, zci)、(xmi, ymi, zmi),i=1, 2, 3。如图 8所示,3点可构建出一个新的坐标系Onxyzp1为坐标系原点,p1指向p2xn轴正方向,3点所在平面为坐标系Onxy平面;用$\overrightarrow{p_{1} p_{4}}, \overrightarrow{p_{1} p_{5}}, \overrightarrow{p_{1} p_{6}}$分别表示新坐标系xnynzn轴方向的单位向量,其在左相机坐标系Ocxyz中的矢量表示形式为

图 8 不共线三点构建的新坐标系 Fig. 8 New coordinate system constructed by three non-collinear points
$ \left\{ \begin{array}{l} \overrightarrow {{p_1}{p_4}} = \frac{{\overrightarrow {{p_1}{p_2}} }}{{\left\| {\overrightarrow {{p_1}{p_2}} } \right\|}} = {a_1}\mathit{\boldsymbol{i}} + {b_1}\mathit{\boldsymbol{j}} + {c_1}\mathit{\boldsymbol{k}}\\ \overrightarrow {{p_1}{p_6}} = \frac{{\overrightarrow {{p_1}{p_2}} \times \overrightarrow {{p_1}{p_3}} }}{{\left\| {\overrightarrow {{p_1}{p_2}} \times \overrightarrow {{p_1}{p_3}} } \right\|}} = {a_3}\mathit{\boldsymbol{i}} + {b_3}\mathit{\boldsymbol{j}} + {c_3}\mathit{\boldsymbol{k}}\\ \overrightarrow {{p_1}{p_5}} = \overrightarrow {{p_1}{p_4}} \times \overrightarrow {{p_1}{p_6}} = {a_2}\mathit{\boldsymbol{i}} + {b_2}\mathit{\boldsymbol{j}} + {c_2}\mathit{\boldsymbol{k}} \end{array} \right. $ (5)
 

由式(5)可得新坐标系Onxyz与左相机坐标系Ocxyz之间的旋转矩阵Rcn;同理可得新坐标系Onxyz与运动模型坐标系Omxyz之间的旋转矩阵Rmn;从而得到模型坐标系Omxyz到左相机坐标系Ocxyz之间的旋转矩阵Rcm与平移向量tcm

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{R}}_{{\rm{cm}}}} = {\mathit{\boldsymbol{R}}_{{\rm{cn}}}} \cdot \mathit{\boldsymbol{R}}_{{\rm{mn}}}^{ - 1}}\\ {{\mathit{\boldsymbol{t}}_{{\rm{cm}}}} = {\mathit{\boldsymbol{p}}_{{\rm{cl}}}} - {\mathit{\boldsymbol{R}}_{{\rm{cm}}}} \cdot {\mathit{\boldsymbol{p}}_{{\rm{ml}}}}} \end{array}} \right. $ (6)
 

式中:pc1pm1分别为标志点p1在相机坐标系和飞行器模型坐标系中的三维坐标矢量表示。

2.4 测量误差理论分析

对位姿初值计算结果进行误差分析。设上述3个标志点p1p2p3在左相机坐标系和飞行器模型坐标系下的三维坐标测量值分别为p′ci(xci, yci, zci),p′mi(xmi, ymi, zmi),i=1, 2, 3;其对应的测量误差分别为(Δxci, Δyci, Δzci)、(Δxmi, Δymi, Δzmi),则标志点对应的理论向量为

$ \overrightarrow {O{p_i}} = \overrightarrow {O{{p'}_i}} - {\Delta ^i} $ (7)
 

式中:Δi为标志点三维坐标测量误差对应的向量。新坐标系理论单位向量$\overrightarrow{p_{1} p_{4}}$与实际单位向量$\overrightarrow{p'_{1} p'_{4}}$计算如下:

$ \overrightarrow {{p_1}{p_4}} = \frac{{\overrightarrow {{O_{\rm{c}}}{p_{{\rm{c2}}}}} - \overrightarrow {{O_{\rm{c}}}{p_{{\rm{c1}}}}} }}{{\left\| {\overrightarrow {{O_{\rm{c}}}{p_{{\rm{c2}}}}} - \overrightarrow {{O_{\rm{c}}}{p_{{\rm{c1}}}}} } \right\|}} = \frac{{\overrightarrow {p_1^\prime p_2^\prime } - {\Delta ^{{\rm{c2}}}} + {\Delta ^{{\rm{c1}}}}}}{{\left\| {\overrightarrow {p_1^\prime p_2^\prime } - {\Delta ^{{\rm{c2}}}} + {\Delta ^{{\rm{c1}}}}} \right\|}} $ (8)
 
$ \overrightarrow {p_1^\prime p_4^\prime } = \frac{{\overrightarrow {{O_{\rm{c}}}{{p'}_2}} - \overrightarrow {{O_{\rm{c}}}{{p'}_1}} }}{{\left\| {\overrightarrow {{O_{\rm{c}}}{{p'}_2}} - \overrightarrow {{O_{\rm{c}}}{{p'}_1}} } \right\|}} = \frac{{\overrightarrow {p_1^\prime p_2^\prime } }}{{\left\| {\overrightarrow {p_1^\prime p_2^\prime } } \right\|}} $ (9)
 

$\overrightarrow{p_{1} p_{4}}$$\overrightarrow{p'_{1} p'_{4}}$计算得到单位向量矢量表示形式的误差Δp1p4c

$ \Delta _{{p_1}{p_4}}^{\rm{c}} = \overrightarrow {{{p'}_1}{{p'}_4}} - \overrightarrow {{p_1}{p_4}} = \Delta {a_1}\mathit{\boldsymbol{i}} + \Delta {b_1}\mathit{\boldsymbol{j}} + \Delta {c_1}\mathit{\boldsymbol{k}} $ (10)
 

同理可得Δp1p5cΔp1p6c,进而得到ΔRcn与ΔRmn。结合式(6)可以得到最终旋转矩阵误差ΔRcm与平移向量误差Δtcm

2.5 位姿优化

绝对定姿算法可以得到左相机和模型相对位姿的解析解,然而实际测量中标志点三坐标仪坐标标定和双目视觉三维重构均存在一定误差,若单一使用绝对定姿方法计算相对位姿,则结果存在较大误差,因此需要对位姿初值进一步优化。这也是使用多个标志点的原因,可利用多个标志点冗余信息来提高位姿结果优化精度。

由于测量误差的存在,式(1)无法准确成立,单个相机下标志点的投影误差可表示为

$ {\mathit{\boldsymbol{e}}_i} = {\mathit{\boldsymbol{u}}_i} - \frac{1}{{{s_i}}}\mathit{\boldsymbol{K}}\exp \left( {{\mathit{\boldsymbol{\xi }}^ \wedge }} \right){\mathit{\boldsymbol{p}}_i} $ (11)
 

式中:ξ为李代数表示的相对位姿;exp(ξ)表示单个相机与模型之间的相对位姿变换矩阵;pi为标志点在模型局部坐标系下的三维坐标。

基于标志点在左右相机二维像素坐标(3D-2D)的重投影误差,构建李代数下的无约束最小二乘优化问题,将初步解算结果作为迭代初始值,使用Levenberg-Marquardt优化算法对位姿进一步优化,即

$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{\xi }}^*} = \arg \mathop {\min }\limits_\xi \sum\limits_{i = 0}^n {\left\| {\left( {{\mathit{\boldsymbol{u}}_{1i}} - \frac{1}{{{s_i}}}{\mathit{\boldsymbol{K}}_1}\exp \left( {{\mathit{\boldsymbol{\xi }}^ \wedge }} \right){\mathit{\boldsymbol{p}}_i}} \right)} \right.} + }\\ {{{\left. {\left( {{\mathit{\boldsymbol{u}}_{{\rm{r}}i}} - \frac{1}{{{s^\prime }_i}}{\mathit{\boldsymbol{K}}_{\rm{r}}}\exp \left( {\mathit{\boldsymbol{\xi }}_{{\rm{rl}}}^ \wedge } \right)\exp \left( {{\mathit{\boldsymbol{\xi }}^ \wedge }} \right){\mathit{\boldsymbol{p}}_i}} \right)} \right\|}^2}} \end{array} $ (12)
 

为简便表示,公式中间隐含着齐次坐标到非齐次坐标之间的变换,在程序数据层面进行处理;exp(ξrl)表示左右相机相对位姿变换矩阵。

3 测量精度验证与分析

为了验证测量方案的可行性,对系统测量精度进行验证。视觉测量硬件系统由工作站、2 448像素×2 048像素工业相机、850 nm红外光源、8 mm焦距镜头、红外滤光片、圆点阵列标定板以及编码合作标志点构成。双目相机是由2台出厂性能参数完全一致的工业相机构成,软件同步触发,使用USB3.0进行数据传输,帧频最高可达100 Hz。

值得说明的是,动态测量精度比静态精度差,其中一个主要原因是由模型运动成像拖影造成的,成像拖影长度与相机曝光时间和模型运动速度正相关。因此,当双目位姿软件解算速度一定时,可根据比例关系,适当增大曝光时间,调慢运动速度,维持测量系统的精度。

3.1 优化算法精度验证

为验证基于式(12)的优化算法的有效性,对比了单独采用传统绝对定姿算法的测量结果。具体通过机械方式调节小型转台,如图 9所示,多次调整并记录标定板模型的旋转角度,分别采用传统和优化2种算法进行测量,测量结果如图 10所示。结果表明,与传统算法测量误差相比,经过位姿优化算法的测量精度得到明显提高,因此,下文所涉及的静/动态位姿解算都将采用优化算法。

图 9 静态测量精度验证装置 Fig. 9 Device of static measurement accuracy validations
图 10 两种算法测量结果对比 Fig. 10 Comparison of measurement results by two algorithms
3.2 静态测量精度验证

静态测量精度验证使用高精度机械三轴转台,其旋转精度为0.005°,位移精度为0.005 mm。可将标定板验证模型固定在三轴转台上,通过调节旋钮可对模型xyz方向位移和旋转角度实现一定的变化,视觉测量系统对模型位姿变化进行测量,比对测量结果与机械读数。

对模型执行x轴方向移动10 mm,角度转动10°,重复测量100次的测量结果误差如图 11所示。由测量结果可得,静态角度测量精度优于0.02°,位移测量精度优于0.02 mm。

图 11 静态角度与位移测量误差 Fig. 11 Measurement error of static angle and displacement
3.3 动态测量精度验证

动态测量精度验证使用高精度步进导轨,其位移精度为0.01 mm。如图 12所示,将标定板模型固定在移动平台上,通过控制器可动态实现一定位移,视觉测量系统对模型位姿变化进行测量,比对测量结果与实际位移。

图 12 动态测量精度验证装置 Fig. 12 Device of dynamic measurement accuracy validations

对模型执行x轴方向动态移动10 mm,运动速度约为0.3 mm/s,曝光时间设置为1 ms。测量结果与动态运动阶段测量误差分别如图 13图 14所示。由测量结果可知,动态位移最大测量误差小于0.04 mm,绝对值平均误差约为0.025 mm。由此可见,在此运动情况下,双目测量系统具备较高精度的动态测量能力。

图 13 动态位移测量结果 Fig. 13 Measurement results of dynamic displacement
图 14 动态位移测量误差 Fig. 14 Measurement error of dynamic displacement
3.4 典型动态轨迹测量

为了进一步验证该双目测量系统在实际工程应用中的可行性,本文在如图 15所示的绳牵引并联支撑机构上以SDM标模为测量对象,对风洞试验3种典型运动轨迹进行实际动态测量。其中,基于绳牵引并联支撑系统的运动学、动力学分析[20],通过调整绳长可以实现飞行器模型的运动轨迹控制。

图 15 绳牵引并联支撑样机 Fig. 15 Wire-driven parallel suspension mechanism

1) 飞行器模型做大迎角线性运动。其理论轨迹可表示为θ=5·t,俯仰角θ从0°~50°线性变化,运动时间约为10 s。俯仰角运动理论轨迹与实际测量结果如图 16所示。

图 16 大迎角动态运动测量结果 Fig. 16 Measurement results of high angle of attack dynamic motion

对比数据可知,俯仰角在0°~30°运动期间,绝对值平均误差小于0.3°;在俯仰角逐渐增大至30°~50°时,俯仰角测量误差有所增大,但整体绝对值平均误差小于0.5°。

2) 飞行器模型做大中心迎角下的俯仰振荡运动。其理论轨迹为$\theta=10^{\circ} \cdot \sin \left(\frac{\pi \cdot t}{5}\right)+30^{\circ}$,中心迎角为30°,振幅为10°,频率为0.1 Hz。图 17显示试验过程中该中心迎角下的俯仰振荡运动状态,具体是采用高速相机进行拍摄,示例给出零位姿状态,以及上仰和下俯过程中的几个典型状态。

图 17 俯仰振荡运动侧视图 Fig. 17 Side views of pitch oscillation motion

经双目视觉测定后,俯仰振荡运动的理论曲线与实际测量结果如图 18所示。对比可知,测量值与理论轨迹基本吻合,俯仰角测量误差在振荡峰值附近偏大,但最大测量误差仍小于0.5°,绝对值平均误差为0.19°。

图 18 俯仰振荡测量结果 Fig. 18 Measurement results of pitch oscillation

3) 飞行器模型做升沉、俯仰、滚转三自由度耦合振荡运动。其理论运动轨迹可分别表示为:z=20·sin(πt/10)、θ=10·sin(πt/10)、φ=10·sin(πt/10)。升沉振幅为20 mm,俯仰与滚转振幅均为10°;振荡频率均为0.05 Hz。图 19显示三自由度耦合运动过程瞬间,示例给出零位姿状态与3组升沉/俯仰/滚转耦合运动状态。

图 19 三自由度耦合运动侧视图 Fig. 19 Side views of three DoF coupling motion

经双目视觉测定后,三自由度耦合运动的理论曲线与实际测量结果如图 20所示。经多次试验验证,可知3种测量结果与理论轨迹均比较吻合。其中,俯仰角绝对值平均误差为0.31°;滚转角绝对值平均误差为0.23°;与单自由度振荡相比,耦合振荡时升沉位移误差相对较大,但整体绝对值平均误差仍可达0.4 mm,相对误差为2%。

图 20 三自由度耦合运动测量结果 Fig. 20 Measurement results of three DoF coupling motion
3.5 试验误差分析

由上述试验结果可知,双目视觉位姿测量系统具有较高的动态测量精度,基本满足风洞动态试验的精度要求,但仍存在一定误差,具体原因分析如下:

1) 立体视觉标定误差。本文立体视觉相机内外参使用传统标定方法,标定结果存在微小误差。

2) 标志点模型坐标系三维坐标测量误差。利用高精度三坐标测量仪对标志点坐标标定是人为操作,不可避免存在一定误差,导致模型实际坐标系与理论坐标系有所偏差,对位姿解算产生影响。

3) 动态测量过程标志点成像的拖影。由于相机成像曝光时间和模型运动速度存在,标志点成像会产生拖影,导致标志点特征提取存在一定误差。

4) 运动控制误差。绳牵引并联支撑原理样机经由驱动、传动机构,通过绳长变化控制飞行器模型的位置和姿态,会产生一定的误差累积,进而影响实际运动精度和测量精度。

4 结论

本文针对绳牵引并联支撑飞行器模型大范围动态运动,发展了一种基于双目立体视觉的模型位姿动态测量方法,相关结论如下:

1) 分别进行了静态、动态测量精度验证,结果显示静态时角度精度优于0.02°,位移精度优于0.02 mm。

2) 在绳牵引并联机构样机上对风洞试验3种典型运动轨迹实际测量,角度精度可达到0.1°量级,位移绝对值平均误差为0.4 mm。测量精度基本满足风洞动态试验要求,证明该测量方案是有效可行的。

3) 由测量误差分析可知,可从标定方式或算法、动态拖影图像处理算法和绳牵引并联机构采用高精度闭环控制等方面给予改进,以进一步提高系统测量精度。

该测量方案在实际风洞试验中应用还需进一步完善,如在标志点周围涂抹丙烯酸或将标志点改成模型内嵌自发光方式等以减小对流场的干扰,提高风洞试验精度。

参考文献
[1] 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010: 1-5.
LI Z F. Wind tunnel special tests technology[M]. Beijing: Aviation Industry Press, 2010: 1-5. (in Chinese)
[2] 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1): 70-79.
ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1): 70-79. (in Chinese)
Cited By in Cnki (3) | Click to display the text
[3] 陈杰春, 郭鸣, 丁振良, 等. 基于立体视觉的风洞模型姿态测量方法[J]. 应用光学, 2010, 31(3): 437-441.
CHEN J C, GUO M, DING Z L, et al. Stereo vision based attitude measurement of aircraft model in wind tunnel[J]. Journal of Applied Optics, 2010, 31(3): 437-441. (in Chinese)
Cited By in Cnki (2) | Click to display the text
[4] JONES T, LUNSFORD C. A photogrammetric system for model attitude measurement in hypersonic wind tunnels[C]//The 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA: AIAA, 2007.
[5] LAMBERT T J, VUKASINOVIC B, GLEZER A. A six degrees of freedom dynamic wire-driven traverse[J]. Aerospace, 2016, 3(2): 11.
Click to display the text
[6] 孙岩, 张征宇, 黄诗捷, 等. 风洞试验中模型迎角视觉测量技术研究[J]. 航空学报, 2013, 34(1): 1-7.
SUN Y, ZHANG Z Y, HUANG S J, et al. Vision measurement technology research for model angle of attack in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 1-7. (in Chinese)
Cited By in Cnki (16) | Click to display the text
[7] 刘巍, 尚志亮, 马鑫, 等. 基于彩色编码的副油箱风洞模型位姿测量方法[J]. 航空学报, 2015, 36(5): 1556-1563.
LIU W, SHANG Z L, MA X, et al. Position and attitude measuring method of auxiliary fuel tank based on color-coding in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1556-1563. (in Chinese)
Cited By in Cnki (5) | Click to display the text
[8] SCHAIRER E T, KUSHNER L K, DRAIN B A, et al. Stereo photogrammetry measurements of the position and attitude of a nozzle-plume/shock-wave interaction model in the NASA Ames 9-by 7-Ft supersonic wind tunnel[C]//Aerodynamic Measurement Technology and Ground Testing Conference, 2018.
[9] MARTINEZ B, WEY P, LISBIG M, et al. Stereovision based determination of aerodynamic coefficients for a wind tunnel model in free rotational motion: Aerodynamic measurement[C]//Technology and Ground Testing Conference, 2018.
[10] DRAIN B A, KUSHNER L K, SCHAIRER E T, et al. Model deformation measurements of the truss-braced wing aircraft in the NASA Ames 11-By 11-Ft transonic wind tunnel[C]//55th AIAA Aerospace Sciences Meeting. Reston, VA: AIAA, 2017.
[11] 王晓光, 林麒. 风洞试验绳牵引并联支撑技术研究进展[J]. 航空学报, 2018, 39(10): 022064.
WANG X G, LIN Q. Progress in wire-driven parallel suspension technologies in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 022064. (in Chinese)
Cited By in Cnki | Click to display the text
[12] 郑亚青, 林麒, 刘雄伟, 等. 用于低速风洞飞行器气动导数试验的绳牵引并联支撑系统[J]. 航空学报, 2009, 30(8): 1549-1554.
ZHENG Y Q, LIN Q, LIU X W, et al. On wire-driven parallel suspension systems for static and dynamic derivatives of aircraft in low-speed wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1549-1554. (in Chinese)
Cited By in Cnki (33) | Click to display the text
[13] 黄鹏程, 江剑宇, 杨波. 双目立体视觉的研究现状及进展[J]. 光学仪器, 2018, 40(4): 81-86.
HUANG P C, JIANG J Y, YANG B. Research status and progress of binocular stereo vision[J]. Optical Instruments, 2018, 40(4): 81-86. (in Chinese)
Cited By in Cnki | Click to display the text
[14] 李磊刚, 梁晋, 唐正宗, 等. 飞机结构件运动数据的动态视觉测量系统[J]. 光学精密工程, 2012, 20(9): 1929-1938.
LI L G, LIANG J, TANG Z Z, et al. Optical and dynamic measuring system for movement data of aircraft structural parts[J]. Optics and Precision Engineering, 2012, 20(9): 1929-1938. (in Chinese)
Cited By in Cnki (13) | Click to display the text
[15] 孟祥丽, 陈聘, 丁华. 摄影测量中编码标志点设计方案概述[J]. 计量与测试技术, 2019, 46(1): 54-56.
MENG X L, CHEN P, DING H. An overview of coded marker points design schemes in photogrammetry[J]. Metrology & Measurement Technique, 2019, 46(1): 54-56. (in Chinese)
Cited By in Cnki | Click to display the text
[16] CARSTEN S, MARKUS U, CHRISTIAN W.机器视觉算法与应用[M].杨少荣, 吴迪靖, 段德山, 译.北京: 清华大学出版社, 2008: 294-316.
CARSTEN S, MARKUS U, CHRISTIAN W. Machine vision algorithms and applications[M]. YANG S R, WU D J, DUAN D S, translated. Beijing: Tsinghua University Press, 2008: 294-316(in Chinese).
[17] RAFAEL C, RICHARD E.数字图像处理[M].阮秋琦, 阮宇智, 译.北京: 电子工业出版社, 2011: 407-410.
RAFAEL C, RICHARD E. Digital image processing[M]. RUAN Q Q, RUAN Y Z, translated. Beijing: Publishing House of Electronics Industry, 2011: 407-410(in Chinese).
[18] HORN B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A, 1987, 4(4): 629-642.
Click to display the text
[19] 王保丰, 徐宁, 余春平, 等. 两种空间直角坐标系转换参数初值快速计算的方法[J]. 宇航计测技术, 2007(4): 20-24.
WANG B F, XU N, YU C P, et al. Quick arithmetic for the transformation approximation of two space rectangular coordinate systems[J]. Journal of Astronautic Metrology and Measurement, 2007(4): 20-24. (in Chinese)
Cited By in Cnki (28) | Click to display the text
[20] 王晓光, 王义龙, 林麒, 等. 风洞试验绳牵引并联机器人高精度控制仿真[J]. 动力学与控制学报, 2016, 14(5): 475-480.
WANG X G, WANG Y L, LIN Q, et al. High precision control of wire-driven parallel robot in wind tunnel test[J]. Journal of Dynamics and Control, 2016, 14(5): 475-480. (in Chinese)
Cited By in Cnki (2) | Click to display the text
http://dx.doi.org/10.7527/S1000-6893.2019.23059
中国航空学会和北京航空航天大学主办。
0

文章信息

周凡桂, 王晓光, 高忠信, 林麒
ZHOU Fangui, WANG Xiaoguang, GAO Zhongxin, LIN Qi
双目视觉绳系支撑飞行器模型位姿动态测量
Binocular vision-based measurement of dynamic motion for aircraft model suspended by wire system
航空学报, 2019, 40(12): 123059.
Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 123059.
http://dx.doi.org/10.7527/S1000-6893.2019.23059

文章历史

收稿日期: 2019-04-03
退修日期: 2019-04-25
录用日期: 2019-06-17
网络出版时间: 2019-06-27 10:34

相关文章

工作空间