玻-碳混杂复合材料开孔拉伸力学行为-强度所60周年专刊

  • 张强 ,
  • 李磊 ,
  • 黄光启 ,
  • 谢佳卉 ,
  • 宋贵宾
展开
  • 1. 中国飞机强度研究所
    2. 强度与结构完整性全国重点实验室

收稿日期: 2025-05-28

  修回日期: 2025-07-02

  网络出版日期: 2025-07-03

Open-hole tensile mechanical behavior of carbon/glass hybrid composites

  • ZHANG Qiang ,
  • LI Lei ,
  • HUANG Guang-Qi ,
  • XIE Jia-Hui ,
  • SONG Gui-Bin
Expand

Received date: 2025-05-28

  Revised date: 2025-07-02

  Online published: 2025-07-03

摘要

玻-碳混杂效应导致复合材料在拉伸过程中过渡界面呈现更为复杂的力学响应。为了研究玻-碳混杂的层间性能,分别设计制作了粘接与未粘接两种试样,并开展了开孔拉伸力学行为研究。通过采用应变计和高速摄像机,对加载过程和破坏瞬间材料力学行为进行了监测;随后,采用有限元仿真,计算层间应力;最后通过理论建模,对层间应力进行了数值推导。结果表明:加载过程中,粘接层存在应力σ3、τ13、τ23,但是根据应变采集和仿真计算结果可知,数值远低于层间强度;试样在发生破坏后,破坏部分材料发生回弹,回弹力与材料弹性模量、最大破坏应变等线性相关,远大于层间最大剪切应力,是导致材料分层的主要原因。

本文引用格式

张强 , 李磊 , 黄光启 , 谢佳卉 , 宋贵宾 . 玻-碳混杂复合材料开孔拉伸力学行为-强度所60周年专刊[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32312

Abstract

Abstract: The carbon/glass hybrid effect causes more complex mechanical responses at the interfaces during the tensile process of composites. In order to study the effect of carbon/glass hybridization on the interlaminar properties, two kinds of specimens, bonded and unbonded, were designed and fabricated, and the tensile mechanical behavior of open-hole was studied. Using strain gauges and high-speed cameras, we monitored the loading process and the mechanical behavior of the materials at the moment of failure. Subse-quently, finite element simulation was used to calculate the interlayer stress. Finally, through theoretical modeling, the interlaminar stress was numerically derived. The results show that there are stresses σ3, τ13 and τ23 in the adhesive layer during the loading process, but according to the strain acquisition and simulation calculation results, the values are lower than the interlaminar strength. After the specimen damaged, destruction of part of the material will rebound. The resilience force is linearly related to the elastic modulus and the maximum failure strain of the material, and is greater than the maximum shear stress between layers, which is the main reason for the delamination failure of the material.

参考文献

[1] Gay D. Composite materials: design and applications[M]. CRC press, 2022.
[2] 徐林, 刘传军, 赵崇书. 复合材料在民用飞机应用与发展趋势[J]. 复合材料科学与工程, 2024, 0(9): 98-104.
XU Lin, LIU Chuanjun, ZHAO Chongshu. Ap-plication and development trends of composite materials in civil aircraft[J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 98-104. 4, 0(9): 98-104(in Chinese).
[3] 汪璇, 裴轶群, 周方宇, 等. 船舶复合材料应用现状及发展趋势[J]. 造船技术, 2021 (04): 74-80.
WANG Xuan, PEI Yiqun, ZHOU Fangyu, et al. Application status and development trend of ship composite materials[J] Marine Technology, 2021 (04): 74-80(in Chinese).
[4] 谌广昌, 吴明忠, 陈普会. 高性能复合材料在直升机结构上的应用展望[J]. 航空制造技术, 2019, 62(12): 83-90.
ZHAN Guangchang, WU Mingzhong, CHEN Puhui. Application Predication of Higher-Performance Composites in Rotorcraft Struc-tures[J]. Aeronautical Manufacturing Technology, 2019, 62(12): 83-90(in Chinese).
[5] 沈真. 碳纤维复合材料在飞机结构中的应用[J]. 高科技纤维与应用, 2010, 35(4): 1-4.
SHEN Zhen. Application of carbon fiber compo-sites in air craft structures[J]. Hi-Tech Fiber & Application, 2010, 35(4): 1-4(in Chinese).
[6] 王湘江,夏俊康,冀运东,等. 复合材料开孔板拉伸损伤对剩余压缩强度的影响[J]. 复合材料学报,2024,41(04):2111-2125.
WANG Xiangjiang, XIA Junkang, JI Yundong, et al. Effect of tension damage on structures re-sidual compression strength of open-hole com-posite laminates[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2111-2125(in Chinese).
[7] 李汝鹏,陈磊,刘学术,等. 基于渐进损伤理论的复合材料开孔拉伸失效分析[J]. 航空材料学报,2018,38(05):138-146.
LI Rupeng, CHEN Lei, LIU Xueshu, et al. Pro-gressive Damage Based Failure Analysis of Open-hole Composite Laminates under Ten-sion[J]. Journal of Aeronautical Materials, 2018, 38(5): 138-146(in Chinese).
[8] Chang F K, Chang K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of composite materials, 1987, 21(9): 834-855.
[9] Swolfs Y, Verpoest I, Gorbatikh L. Recent ad-vances in fibre-hybrid composites: materials se-lection, opportunities and applications[J]. Inter-national Materials Reviews, 2019, 64(4): 181-215.
[10] He B, Wang B, Wang Z, et al. Mechanical prop-erties of hybrid composites reinforced by carbon fiber and high-strength and high-modulus poly-imide fiber[J]. Polymer, 2020, 204: 122830.
[11] Wu Z S, Yang C Q, Tobe Y H, et al. Electrical and mechanical characterization of hybrid CFRP sheets[J]. Journal of composite materials, 2006, 40(3): 227-244.
[12] Phillips L N. The hybrid effect-does it exist?[J]. Composites, 1976, 7: 7-8.
[13] Marom G, Fischer S, Tuler F R, et al. Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behav-iour[J]. Journal of Materials Science, 1978, 13: 1419-1426.
[14] Manders P W, Bader M G. The strength of hy-brid glass/carbon fibre composites: part 2 a sta-tistical model[J]. Journal of materials science, 1981, 16: 2246-2256.
[15] Marom G, Fischer S, Tuler F R, et al. Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behav-iour[J]. Journal of Materials Science, 1978, 13: 1419-1426.
[16] 徐波, 宋焕成. 混杂纤维复合材料的混杂效应[J]. 复合材料学报, 1988, 5(1): 67-XI.
Xu Bo, Song Huancheng. THE HYBRID EFFECT OF HYBRID FIBROUS COMPOSITES[J]. Acta Materiae Compositae Sinica, 1988, 5(1): 67-XI(in Chinese).
[17]何小兵, 曹勇, 严波, 等. GFRP/CFRP层间混杂纤维复合材料极限拉伸性能. 重庆交通大学学报(自然科学版), 2013, 6: 013.
HE Xiaobing, CAO Yong, YAN Bo, et al. Ulti-mate tensile performance of interplay hybrid GFRP/CFRP composite. Journal of Chongqing Jiaotong University(Natural Sciences), 2013, 6: 013(in Chinese).
[18] Haery H A, Zahari R, Kuntjoro W, et al. Tensile strength of notched woven fabric hybrid glass, carbon/epoxy composite laminates[J]. Journal of Industrial Textiles, 2014, 43(3): 383-395.
[19] Taketa I, Ustarroz J, Gorbatikh L, et al. Interply hybrid composites with carbon fiber reinforced polypropylene and self-reinforced polypropyl-ene[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 927-932.
[20] 付凌峰, 姜鑫, 孙震, 等. 碳/玻混杂纤维铺层结构对风力机叶片弯扭耦合特性的影响[J]. 复合材料学报, 2023, 40(7): 3912-3920.
FU Lingfeng, JIANG Xin, SUN Zhen, et al. In-fluence of carbon/glass hybrid fiber layup struc-ture on the bending-twisting coupling behavior of wind turbine blades[J]. Acta Materiae Com-positae Sinica, 2023, 40(7): 3912-3920(in Chi-nese).
[21] 马腾, 贾智源, 关晓方, 等. 混杂比对单向碳-玻层间混编复合材料0°压缩和弯曲性能的影响[J]. 复合材料学报, 2017, 34(4): 758-765.
MA Teng, JIA Zhiyuan, GUAN Xiaofang, et al. Effects of hybrid ratio on the axial compressed and flexural properties of unidirectional inter-layer carbon-glass hybrid composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 758-765(in Chinese).
[22] 马芳武, 杨猛, 蒲永锋, 等. 混杂比对碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2019, 36(2): 362-369.
MA Fangwu, YANG Meng, PU Yongfeng, et al. Effect of hybrid ratio on the flexural properties of carbon and basalt hybrid fibers reinforced epoxy resin composites[J]. Acta Materiae Com-positae Sinica, 2019, 36(2): 362-369(in Chinese).
[23] 郑凯东, 陈宏达, 蔡伟, 等. 厚/薄铺层混杂复合材料低速冲击损伤特征[J]. 复合材料学报, 2025, 42(5): 2595-2606.
ZHENG Kaidong, CHEN Hongda, CAI Wei, et al. Damage characteristics of low-velocity impact of hybrid laminates made of thick- and thin-plies[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2595-2606(in Chinese).
[24] 李晨, 徐欢欢, 古兴瑾. 层间混杂复合材料板的拉伸强度预报[J]. 复合材料学报, 2017, 34(4): 795-800(in Chinese).
LI Chen, XU Huanhuan, GU Xingjin. Prediction on tensile strength of inter-ply hybrid composite laminates[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 795-800.
[25] Dasari S, Patnaik S, Bhattacharyya T, et al. Mode I and II interlaminar fracture toughness of glass/carbon inter‐ply hybrid FRP composites: Effects of stacking sequence and testing tempera-ture[J]. Polymer Composites, 2023, 44(6): 3622-3633.
[26] Sriranga B K, Kirthan L J. The mechanical properties of hybrid laminates composites on epoxy resin with natural jute fiber and S-glass fibers[J]. Materials Today: Proceedings, 2021, 46: 8927-8933.
[27] American Society for Testing and Materials. Standard test method for open-hole tensile strength of polymer matrix composite lami-nates[J]. 2018.
文章导航

/