[1] ESCHER W, SCHNURSTEIN R. A Retrospective on Early Cryogenic Primary Rocket Subsystem Designs as Integrated into Rocket-Based Combined-Cycle (RBCC) Engines[C]. 29th Joint Propulsion Conference and Exhibit, Monterey, CA, 1993.
[2] EHRLICH J. CARL F. Early studies of RBCC applications and lessons learned for today[C]. Las Vegas: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2000.
[3] MCCLINTON C R, ANDREWS E H, HUNT J L. Engine Development for Space Access: Past, Present and Future[C]. ISABE, 2001.
[4] 张堃元. 高超声速曲面压缩进气道及其反设计[M]. 北京: 国防工业出版社, 2019: 1-23.
ZHANG K Y. Hypersonic curved compression inlet and its inverse design[M]. Beijing: National Defense Industry Press, 2019: 1-23 (in Chinese).
[5] HUETER U. Advanced Reusable Transportation Technologies Project Overview[C]. Norfolk: Space Plane and Hypersonic Systems and Technology Conference, 1996.
[6] ESCHER W. Combined-Cycle Propulsion (CCP) Ejector Mode Using a Mono Propellant Hydrogen Per-oxide Rocket Subsystem[C]. Ohio: 12th Annual Pennsylvania State University Propulsion Engineering Research Center Symposium, 2000.
[7] BILLIG F S. SCRAM-A Supersonic Combustion Ram-jet Missile[R]. Monterey: 29th Joint Propulsion Conference and Exhibit 1993-2329, 1993.
[8] SHI L, YANG Y, ZHAO G, et al. Research and development on inlets for rocket based combined cycle en-gines[J]. Progress in aerospace sciences, 2020, 117: 100639.
[9] BILLIG F S, KOTHARI A P. Streamline tracing: Technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3): 465-471.
[10] BULMAN M J, SIEBENHAAR A. The rebirth of round hypersonic propulsion[C]. California: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006.
[11] ZUO F, MOLDER S, CHEN G. Performance of wave catcher intakes at angles of attack and sideslip[J]. Chi-nese Journal of Aeronautics, 2021, 34(7): 244-256.
[12] TAYLOR T M, WIE D V. Performance Analysis of Hypersonic Shape-Changing Inlets Derived from Morphing Streamline Traced Flowpaths[C]. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, Ohio, 2008.
[13] 孙波, 张堃元,金志光, 等. 流线追踪Busemann进气道设计参数的选择[J]. 推进技术, 2007, 28(1): 55-59.
SUN B, ZHANG K Y, JIN Z G, et al. Selection of design parameters for streamtraced hypersonic Busemann inlets[J]. Journal of Propulsion Technology, 2007, 28(1): 55-59 (in Chinese).
[14] 孙波, 张堃元, 王成鹏, 等. Busemann进气道无粘流场数值分析[J]. 推进技术, 2005, 26(3): 242-247.
SUN B, ZHANG K Y, WANG C P, et al. Inviscid CFD analysis of hypersonic Busemann inlet[J]. Journal of Propulsion Technology, 2005, 26(3): 242-247 (in Chinese).
[15] 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计. 航空动力学报, 2011, 26(3): 518-523.
NAN X J, ZHANG K Y, JIN Z G, et al. Investigation on hypersonic inward-turning inlets with controlled pres-sure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523 (in Chinese).
[16] 南向军, 张堃元. 采用新型基准流场高超内收缩进气道性能分析[J]. 宇航学报, 2012, 33(2): 252-259.
NAN X J, ZHANG K Y. Analysis of Hypersonic Inward Turning Inlet with Innovative Axisymmetric Basic Flowfield[J]. Journal of Astronautics, 2012, 33(2): 252-259 (in Chinese).
[17] 卫锋. 基于特征线理论的流线追踪内转向进气道设计方法研究[D]. 长沙: 国防科学技术大学, 2012: 13-34.
WEI F. Investigation on Design Methodology for In-ward Turning Inlet Based on the Rotational Method of Characteristics[D]. Changsha: National University of Defense Technology, 2012: 13-34 (in Chinese).
[18] 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256.
YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256 (in Chinese).
[19] 石磊, 何国强, 秦飞, 等. 某 RBCC 样机进气道设计与数值模拟研究[J]. 航空动力学报. 2011, 26(8): 1801-1807.
SHI L, HE G Q, QIN F, et al. Design and numerical investigation of RBCC prototype inlet[J]. Journal of Aerospace Power. 2011, 26(8): 1801-1807 (in Chinese).
[20] 薛龙生, 高超飞行器前体进气道一体化气动设计与试验研究[D], 南京: 南京航空航天大学, 2018: 20-32.
XUE L S, Integrated Aerodynamic Design and Experimental Study on Forebody and Inlet of a Hypersonic Vehicle[D], Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 20-32 (in Chinese).
[21] 贺旭照, 倪鸿礼. 密切内锥乘波体设计方法和性能分析[J]. 力学学报, 2011, 43(5): 803-808.
HE X Z, NI H L. Osculating Inward Turning Cone(OIC) Wave Rider-Design Methods and Performance Analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 803-808 (in Chinese).
[22] HE X, LE J, ZHOU Z, et al. Osculating Inward Turning Cone Waverider/Inlet (OICWI) Design Methods and Experimental Study[R]. AIAA, 2012-5810.
[23] 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6): 1270-1276.
HE X Z, QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and in-let[J]. Journal of Aerospace Power, 2013, 28(6): 1270-1276 (in Chinese).
[24] 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(04), 510-515.
HE X Z, ZHOU Z, ZHOU Z. Integrated Design Meth-ods and Performance Analyses of Osculating Inward Turning Cone Waverider Forebody Inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(04), 510-515 (in Chinese).
[25] 李铮, 袁化成, 杨德壮. 基于三维内转式进气道的前体一体化设计[J]. 机械制造与自动化, 2023, 52(04): 60-63.
YI Z, YUAN H C, YANG D Z. Integrated Design of Osculating Cone Waverider Forebody Based on Three-dimensional Inward-turning Inlet[J]. Machine Building & Automation, 2023, 52(04): 60-63 (in Chinese).
[26] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8): 1417-1426.
NAN X J, ZHANG K Y, JIN Z G. Integrated Design of Waverider Forebody and Lateral Hypersonic Inward Turning Inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1417-1426 (in Chinese).
[27] WALKER S H. Falcon Hypersonic Technology Over-view[R]. AIAA, 2005-3253.
[28] LOCKHEED CORP. Integrated inward turning inlets and nozzles for hypersonic air vehicles: EP20070102293[P]. 2009-12-16.
[29] 严岭峰. RBCC 飞行器前体/进气道一体化气动构型设计[D]. 南京: 南京航空航天大学, 2014: 21-55.
YAN L F. Forebody/Inlet Integrative Design of Trans-atmospheric Vehicle Based on RBCC[D], Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 21-55 (in Chinese).
[30] SHI L, YANG Y, YANG X, et al. Start Limits and Posi-tive Control of RBCC Inlet[J]. Journal of Aerospace Engineering, 2022, 35(2): 04021128.
[31] 马凯. 内嵌火箭冲压发动机燃烧室亚-超剪切层混合特性研究[D]. 西安: 西北工业大学, 2020: 87-100.
MA K. Investigation on the Mixing Features of Subson-ic-Supersonic shear layer in Ramjet with embedded rocket[D]. Xi’an: Northwestern Polytechnical University, 2020: 87-100 (in Chinese).
[32] YANG Y Y, TIAN Z Y, YANG X, et al. Start/unstart hysteresis characteristics driven by embedded rocket of a rocket-based combined-cycle inlet[J]. Physics of Fluids, 2024, 36: 086101.
[33] SHI L, YANG Y Y, YANG X, et al. Experimental and numerical study on reinforcement mechanism of embedded rocket on back pressure resistance of RBCC in-let at starting stage[J]. Aerospace Science and Technology. 2022, 123: 107487.