高速火箭增强冲压发动机内转进气道气动设计与风洞试验

  • 杨一言 ,
  • 傅岸祥 ,
  • 王昱辉 ,
  • 田照阳 ,
  • 石磊
展开
  • 西北工业大学

收稿日期: 2025-05-07

  修回日期: 2025-07-02

  网络出版日期: 2025-07-03

基金资助

国家自然科学基金;陕西省重点研发计划项目资助

Aerodynamic design and wind tunnel test on the inward-turning inlet of high-speed rocket-augmented ramjet engine

  • YANG Yi-Yan ,
  • FU An-Xiang ,
  • WANG Yu-Hui ,
  • TIAN Zhao-Yang ,
  • SHI Lei
Expand

Received date: 2025-05-07

  Revised date: 2025-07-02

  Online published: 2025-07-03

摘要

将压缩效率高、内流品质好、流量系数高、溢流阻力小的内转进气道应用于火箭增强冲压发动机,实现内转进气道与内置火箭中心支板的一体化融合,将有效提高组合发动机进气道在典型飞行区间内的工作性能,大幅强化火箭增强型冲压动力的应用潜力。基于典型的中心支板式火箭增强冲压发动机构型,如果只采用简单的结构集成方式,一方面中心支板的物理介入会严重破坏内转进气道的压缩性能;另一方面,其楔形前缘会分割进气道隔离段下游的高速气流并引发斜激波和膨胀波干扰,导致额外压缩作用及内收缩比增加,引起总压恢复系数显著下降。为解决这些问题,本文提出了一种基于流线追踪技术的内转进气道与中心支板结构的一体化设计方法,通过融合中心支板与进气道压缩曲面,不仅可消除附加压缩效应,还可以充分发挥其特型前体的来流压缩能力。数值仿真与风洞试验结果表明,该设计方法可使一体化内转进气道在引入中心支板结构的同时充分发挥出内转基准流场的压缩性能。在与传统的楔形中心支板方案的对比中,其长度最大可缩短60%,内收缩比可降低25%,从而保证良好的起动能力;在来流速度马赫6、喉部压升比34.8的高收缩比、大压缩量条件下,总压恢复系数可提升17%。

本文引用格式

杨一言 , 傅岸祥 , 王昱辉 , 田照阳 , 石磊 . 高速火箭增强冲压发动机内转进气道气动设计与风洞试验[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32202

Abstract

Integrating inward-turning inlet with high compression efficiency, good internal flow quality, high flow coefficient, and low overflow resistance with a rocket-augmented ramjet engine can effectively improve the performance of rocket-combined ramjet inlet within the typical flight range and greatly enhance the application potential of rocket-augmented ramjet engine. Based on the typical central strut configuration of a rocket-augmented ramjet engine, if only a simple structural integration method is adopted, the physical intervention of the central strut would seriously damage the compression performance of the inward-turning inlet while its wedge-shaped leading edge would divide the high-speed airflow downstream of the inlet isolator and cause oblique shock and expansion wave interference, resulting in additional compression and an increase in internal contraction ratio, causing a significant decrease in the total pressure recovery coefficient. To address these issues, this paper proposes a structural integration design method between an inward-turning inlet and central strut based on streamline tracing technique. By integrating the central strut with the inlet compression surfaces, not only can additional compression effects be eliminated, but the inflow compression capability of its special precursor can also be fully utilized. The numerical simulation and wind tunnel test verification results indicate that this design method can enable the integrated inward-turning inlet to fully exert the compres-sion performance of the basic flow field while introducing the central strut. Compared with the traditional wedge-shaped central strut, its length can be reduced by 60% at most, and the internal contraction ratio can be reduced by 25%, thus ensuring better start capability. Under the conditions of high contraction ratio and strong compression with the incoming flow of Mach 6 and the throat pressure rise ratio of 34.8, the total pressure recovery coefficient is improved by 17%.

参考文献

[1] ESCHER W, SCHNURSTEIN R. A Retrospective on Early Cryogenic Primary Rocket Subsystem Designs as Integrated into Rocket-Based Combined-Cycle (RBCC) Engines[C]. 29th Joint Propulsion Conference and Exhibit, Monterey, CA, 1993. [2] EHRLICH J. CARL F. Early studies of RBCC applications and lessons learned for today[C]. Las Vegas: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2000. [3] MCCLINTON C R, ANDREWS E H, HUNT J L. Engine Development for Space Access: Past, Present and Future[C]. ISABE, 2001. [4] 张堃元. 高超声速曲面压缩进气道及其反设计[M]. 北京: 国防工业出版社, 2019: 1-23. ZHANG K Y. Hypersonic curved compression inlet and its inverse design[M]. Beijing: National Defense Industry Press, 2019: 1-23 (in Chinese). [5] HUETER U. Advanced Reusable Transportation Technologies Project Overview[C]. Norfolk: Space Plane and Hypersonic Systems and Technology Conference, 1996. [6] ESCHER W. Combined-Cycle Propulsion (CCP) Ejector Mode Using a Mono Propellant Hydrogen Per-oxide Rocket Subsystem[C]. Ohio: 12th Annual Pennsylvania State University Propulsion Engineering Research Center Symposium, 2000. [7] BILLIG F S. SCRAM-A Supersonic Combustion Ram-jet Missile[R]. Monterey: 29th Joint Propulsion Conference and Exhibit 1993-2329, 1993. [8] SHI L, YANG Y, ZHAO G, et al. Research and development on inlets for rocket based combined cycle en-gines[J]. Progress in aerospace sciences, 2020, 117: 100639. [9] BILLIG F S, KOTHARI A P. Streamline tracing: Technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3): 465-471. [10] BULMAN M J, SIEBENHAAR A. The rebirth of round hypersonic propulsion[C]. California: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. [11] ZUO F, MOLDER S, CHEN G. Performance of wave catcher intakes at angles of attack and sideslip[J]. Chi-nese Journal of Aeronautics, 2021, 34(7): 244-256. [12] TAYLOR T M, WIE D V. Performance Analysis of Hypersonic Shape-Changing Inlets Derived from Morphing Streamline Traced Flowpaths[C]. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, Ohio, 2008. [13] 孙波, 张堃元,金志光, 等. 流线追踪Busemann进气道设计参数的选择[J]. 推进技术, 2007, 28(1): 55-59. SUN B, ZHANG K Y, JIN Z G, et al. Selection of design parameters for streamtraced hypersonic Busemann inlets[J]. Journal of Propulsion Technology, 2007, 28(1): 55-59 (in Chinese). [14] 孙波, 张堃元, 王成鹏, 等. Busemann进气道无粘流场数值分析[J]. 推进技术, 2005, 26(3): 242-247. SUN B, ZHANG K Y, WANG C P, et al. Inviscid CFD analysis of hypersonic Busemann inlet[J]. Journal of Propulsion Technology, 2005, 26(3): 242-247 (in Chinese). [15] 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计. 航空动力学报, 2011, 26(3): 518-523. NAN X J, ZHANG K Y, JIN Z G, et al. Investigation on hypersonic inward-turning inlets with controlled pres-sure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523 (in Chinese). [16] 南向军, 张堃元. 采用新型基准流场高超内收缩进气道性能分析[J]. 宇航学报, 2012, 33(2): 252-259. NAN X J, ZHANG K Y. Analysis of Hypersonic Inward Turning Inlet with Innovative Axisymmetric Basic Flowfield[J]. Journal of Astronautics, 2012, 33(2): 252-259 (in Chinese). [17] 卫锋. 基于特征线理论的流线追踪内转向进气道设计方法研究[D]. 长沙: 国防科学技术大学, 2012: 13-34. WEI F. Investigation on Design Methodology for In-ward Turning Inlet Based on the Rotational Method of Characteristics[D]. Changsha: National University of Defense Technology, 2012: 13-34 (in Chinese). [18] 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256. YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256 (in Chinese). [19] 石磊, 何国强, 秦飞, 等. 某 RBCC 样机进气道设计与数值模拟研究[J]. 航空动力学报. 2011, 26(8): 1801-1807. SHI L, HE G Q, QIN F, et al. Design and numerical investigation of RBCC prototype inlet[J]. Journal of Aerospace Power. 2011, 26(8): 1801-1807 (in Chinese). [20] 薛龙生, 高超飞行器前体进气道一体化气动设计与试验研究[D], 南京: 南京航空航天大学, 2018: 20-32. XUE L S, Integrated Aerodynamic Design and Experimental Study on Forebody and Inlet of a Hypersonic Vehicle[D], Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 20-32 (in Chinese). [21] 贺旭照, 倪鸿礼. 密切内锥乘波体设计方法和性能分析[J]. 力学学报, 2011, 43(5): 803-808. HE X Z, NI H L. Osculating Inward Turning Cone(OIC) Wave Rider-Design Methods and Performance Analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 803-808 (in Chinese). [22] HE X, LE J, ZHOU Z, et al. Osculating Inward Turning Cone Waverider/Inlet (OICWI) Design Methods and Experimental Study[R]. AIAA, 2012-5810. [23] 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6): 1270-1276. HE X Z, QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and in-let[J]. Journal of Aerospace Power, 2013, 28(6): 1270-1276 (in Chinese). [24] 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(04), 510-515. HE X Z, ZHOU Z, ZHOU Z. Integrated Design Meth-ods and Performance Analyses of Osculating Inward Turning Cone Waverider Forebody Inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(04), 510-515 (in Chinese). [25] 李铮, 袁化成, 杨德壮. 基于三维内转式进气道的前体一体化设计[J]. 机械制造与自动化, 2023, 52(04): 60-63. YI Z, YUAN H C, YANG D Z. Integrated Design of Osculating Cone Waverider Forebody Based on Three-dimensional Inward-turning Inlet[J]. Machine Building & Automation, 2023, 52(04): 60-63 (in Chinese). [26] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8): 1417-1426. NAN X J, ZHANG K Y, JIN Z G. Integrated Design of Waverider Forebody and Lateral Hypersonic Inward Turning Inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1417-1426 (in Chinese). [27] WALKER S H. Falcon Hypersonic Technology Over-view[R]. AIAA, 2005-3253. [28] LOCKHEED CORP. Integrated inward turning inlets and nozzles for hypersonic air vehicles: EP20070102293[P]. 2009-12-16. [29] 严岭峰. RBCC 飞行器前体/进气道一体化气动构型设计[D]. 南京: 南京航空航天大学, 2014: 21-55. YAN L F. Forebody/Inlet Integrative Design of Trans-atmospheric Vehicle Based on RBCC[D], Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 21-55 (in Chinese). [30] SHI L, YANG Y, YANG X, et al. Start Limits and Posi-tive Control of RBCC Inlet[J]. Journal of Aerospace Engineering, 2022, 35(2): 04021128. [31] 马凯. 内嵌火箭冲压发动机燃烧室亚-超剪切层混合特性研究[D]. 西安: 西北工业大学, 2020: 87-100. MA K. Investigation on the Mixing Features of Subson-ic-Supersonic shear layer in Ramjet with embedded rocket[D]. Xi’an: Northwestern Polytechnical University, 2020: 87-100 (in Chinese). [32] YANG Y Y, TIAN Z Y, YANG X, et al. Start/unstart hysteresis characteristics driven by embedded rocket of a rocket-based combined-cycle inlet[J]. Physics of Fluids, 2024, 36: 086101. [33] SHI L, YANG Y Y, YANG X, et al. Experimental and numerical study on reinforcement mechanism of embedded rocket on back pressure resistance of RBCC in-let at starting stage[J]. Aerospace Science and Technology. 2022, 123: 107487.
文章导航

/