发动机喷流与飞机机体绕流存在相互干扰,但飞机绕流状态下排气系统推力特性试验研究不足,原因是传统喷流试验平台仅模拟排气系统工作状态对应的落压比条件而不能模拟飞机前方来流条件。超声速飞机飞行速域较宽,覆盖低速、亚声速、跨声速与超声速等多个速域,导致发动机喷流与飞机机体绕流相互干扰作用更加复杂多变。超声速引射排气系统推力特性风洞试验研究提出了超声速飞机机体约束下引射排气系统推力特性风洞试验方法,获取了超声速飞机多个飞行速域绕流状态下引射排气系统推力特性变化规律。试验研究表明:在不同速域内,飞机绕流状态下超声速引射排气系统设计状态和非设计状态推力特性差异较大,设计状态推力系数可达到0.98以上,非设计状态推力系数最低降至0.79附近,试验研究结果可为超声速引射排气系统设计点和非设计点性能权衡设计提供重要依据。在此基础上,基于数值模拟结果对超声速引射排气系统设计状态和非设计状态的流场特征及其与推力特性的关系进行了分析。
There is mutual interference between engine jet and airframe flow, but there is not enough research on thrust characteristic of exhaust system under the condition of airframe flow. The reason is that the traditional jet test platform only simulates the nozzle pressure ratio condition corresponding to the working condition of the exhaust system, but it can't simulate the flow condition in front of the aircraft. The flight velocity domain of supersonic aircraft is wide, covering many speed domains such as low speed, subsonic speed, transonic speed and supersonic speed, which make the interaction between engine jet and airframe flow more complex and changeable. This paper presents a wind tunnel test method for the thrust characteristics of supersonic ejector exhaust system under the constraints of supersonic aircraft airframe, and obtains the variation law of the thrust characteristics of the ejector exhaust system under the conditions of multi-flight velocity domain circumfluence of supersonic aircraft. The experimental results show that there is a great difference between the design state and the non-design state thrust characteristics of the supersonic ejector exhaust system in different speed range. The thrust coefficient of the design state can reach above 0.98 and the minimum thrust coefficient of the non-design state can be reduced to around 0.80. The experimental results can provide an important basis for the design of the supersonic ejector exhaust system and the performance tradeoff design of the non-design point. Based on the results of numerical simulation, the characteristics of the flow field and the relationship between the design state and the non-design state of the supersonic ejector exhaust system and the thrust characteristics are analyzed.
[1] 徐悦,韩忠华,尤延铖,等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报,2020,65(2-3):127-133.
XU Yue, HAN Zhong-hua, YOU Yan-cheng, et al. Pro-gress and challenges of next generation green supersonic civil aircraft [J]. Chinese Science Bulletin, 2020,65(2-3):127-133. (in Chinese)
[2] 韩玉琪. 超声速民机动力发展分析[J]. 航空动力,2023,(3):47-49.
HAN Yu-qi. Analysis of engines for supersonic airliners [J]. Aerospace Power, 2023,(3):47-49. (in Chinese)
[3] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2):626310.
DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2):626310( in Chinese)
[4] Kumar R A,Rajesh G. Physics of Vacuum Generation in Zero-Secondary Flow Ejectors[J]. Physics of Fluids,2018,30(6).
[5] Karthick S K,Rao S M V,Jagadeesh G,et al. Para-metric Experimental Studies on Mixing Characteristics Within a Low Area Ratio Rectangular Supersonic Gase-ous Ejector[J]. Physics of Fluids,2016,28(7).
[6] Bastian Muth,Marcel S,Sebastian Beth, et al.. Basic Study of the Ejector Effect, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2011-5529.
[7] 黄河峡,张可心,谭慧俊,等. 带第三流路辅助进气的引射喷管流动特性研究[J]. 推进技术,2020,41(12):2729-2738.
HUANG He-xia,ZHANG Ke-xin,TAN Hui-jun,et al. Flow Characteristics of an Integrated Ejector Nozzle with Tertiary Intake[J]. Journal of Propulsion Tech-nology,2020,41(12):2729-2738.) (in Chi-nese).
[8] 蔡佳,李子杰,黄河峡,等. 宽速域引射喷管巡航状态流动特性仿真[J]. 火箭推进,2020, 46(6):22-30.
CAI Jia, LI Zi-jie, HUANG He-xia, et al. Nu-merical study on the flow characteristics of ejectornozzle with wide - speed range under cruise state[J]. Journal of Rocket Propulsion, 2020, 46(6):22-30. (in Chinese).
[9] 肖天航,徐雅楠,朱震浩,等. 超声速民机发动机短舱布局对声爆的影响[J]. 北京航空航天大学学报,2023,49(9):2267-2278.
XIAO T H, XU Y N, ZHU Z H, et al. Effect of engine nacelle layout on sonic boom of supersonic transport[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2267-2278 (in Chinese).
[10] Zohar Hoter, Raymond S C, Zaman K B M Q. CFD Optimization of Ejector Flaps in a One-Sided Mixer Ejector Nozzle, AIAA SciTech Forum,2019-0544.
[11] Alan S.E, Timothy J M. Cold-Flow Model Tests to De-termine Static Performance of a NASA One-Sided Ejector Nozzle System, NASA/CR- 2020-220453
[12] John D.Wolter. A 1/10th Scale Model Test of a Fixed Chute Mixer-Ejector Nozzle in Unsuppressed Mode, NASA/TM,2007, 213601
[13] Deepak Thirumurthy. Preliminary Design and Computa-tional Analysis of an Ejector Nozzle with Chevrons, 49th AIAA Aerospace Sciences Meeting,2011-918.
[14] Isaac Witte, Colin Graham, Timothy Wray, et al. Evalua-tion of Six Turbulence Models for Accurate Numerical Simulation of 2D Slot Nozzle Ejector, AIAA Aviation,2016-3573.
[15] Chen H Y, Cai C P, Jiang S B, et al. Numerical Modeling on Installed Performance of Turbofan Engine with Inlet Ejector[J]. Aerospace Science and Tech-nology, 2021,112: 106590.
[16] H. Chen, H. Zhang, Z. Xi, et al. Modeling of the Turbofan with an Ejector Nozzle Based on Infrared Prediction, Applied Thermal Engineering,2019, 113910
[17] Zaman K B M Q, Fagan A F, Bridges J E. Experimental Investigation of a One-Sided Ejector Nozzle, NASA/TM,2019, 220064.
[18] Zaman K B M Q, Bridges J E, Castner R S, et al. An investigation of a mixer-ejector nozzle for jet noise re-duction, Aeroacoustics Conferences,2019-2494.
[19] Eric S.H, Jonathan A S. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design, NASA/TM,2012, 217709.
[20] Hatim Soeb Rangwala, Donald R. Wilson. Simulation of a Low-Bypass Turbofan Engine with an Ejector Nozzle using NPSS, AIAA Propulsion and Energy Forum,2017-5056.
[21] 许哲文,唐海龙,陈敏,等. 基于混合维度仿真的自适应循环发动机引射喷管安装性能研究[J]. 推进技术,2023, 44(9):2207083.
XU Zhe-wen, TANG Hai-long, CHEN Min, et al. Installed Performance of Adaptive Cycle Engine Ejector Nozzle Based on Multi-Fidelity Simulation[J]. Journal of Propulsion Technology, 2023, 44(9):2207083. (in Chinese).
[22] XU Z W, TANG H L,GONG J M, et al. An efficient multi-fidelity simulation method for adaptive cycle engine ejector nozzle performance evaluation[J]. Aerospace Science and Technology, 2022,124: 107568.
[23] 季军,邓祥东,白玉平,等. FL-3风洞喷流试验高精度数字阀的设计与实现[J]. 实验流体力学,2014,28(5):76-80.
Ji J, Deng X D, Bai Y P, et al. Design and implementation of high accurate digital valve for FL-3 wind tunnel, Journal of Experiments in Fluid Mechanics, 2014, 28(5):76-80(in Chinese).
[24] 季军,宋孝宇,邓祥东,等. 高速风洞一体形式的喷流影响试验技术研究[J]. 实验流体力学,2017,31(6):71-77.
Ji J, Song X Y, Deng X D, et al. Research on metric thrust jet-effects testing methodology in high-speed wind tunnel, Journal of Experiments in Fluid Mechanics, 2017, 31(6):71-77(in Chinese).