考虑滑流效应的分布式电推进飞机动力偏航预测控制(空天前沿大会增刊)

  • 贺之豪 ,
  • 寇鹏 ,
  • 梁博华 ,
  • 梁得亮
展开
  • 西安交通大学

收稿日期: 2025-05-28

  修回日期: 2025-06-18

  网络出版日期: 2025-06-20

基金资助

基于多电机协调预测控制的分布式电推进飞机动力偏航

Powered yaw predictive control of distributed electric propulsion aircraft considering slipstream effects

  • HE Zhi-Hao ,
  • KOU Peng ,
  • LIANG Bo-Hua ,
  • LIANG De-Liang
Expand

Received date: 2025-05-28

  Revised date: 2025-06-18

  Online published: 2025-06-20

摘要

分布式电推进飞机的一个固有特征,是其机翼表面大部分区域被电推进器产生的滑流所覆盖。在动力偏航过程中,这种滑流效应会对机翼的升力和阻力分布产生显著影响,进而引发额外的横侧向力矩,影响动力偏航过程。对此,提出一种考虑滑流效应的模型预测控制策略,用于分布式电推进飞机的动力偏航控制。首先,建立考虑滑流效应的分布式电推进飞机飞行动力学模型,其中滑流效应通过XROTOR-涡格法进行描述,该模型为线性状态空间模型,在满足偏航控制实时性要求的同时,可保证较高的保真度。随后,基于该模型设计动力偏航模型预测控制策略,为每个电推进器计算滑流影响下的动力偏航最优推力指令。最后,通过飞行实验和MATLAB-OpenVSP联合仿真,验证所提控制策略的有效性,及其在实际工程应用中的可行性。仿真结果表明,相较于不考虑滑流效应的模型预测控制策略,所提控制策略对偏航角的跟踪误差减少21.42%,推力差动能耗降低15.45%。

本文引用格式

贺之豪 , 寇鹏 , 梁博华 , 梁得亮 . 考虑滑流效应的分布式电推进飞机动力偏航预测控制(空天前沿大会增刊)[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32305

Abstract

A distinctive feature of distributed electric propulsion (DEP) aircraft is that a significant portion of the wing surface is ex-posed to slipstream effects generated by the electric propellers. During powered yaw control, this slipstream effect notably influences the spanwise lift and drag distribution, thereby inducing additional lateral-directional moments that affect the pow-ered yaw turn. To address this, a model predictive control (MPC) strategy that accounts for slipstream effects is proposed for the powered yaw control of DEP aircraft. First, a DEP aircraft flight dynamics model that incorporates slipstream effects is established. The slipstream effect is described using the XROTOR-vortex lattice method, resulting in a linear state-space model that meets the real-time requirements of yaw control while ensuring high fidelity. Based on this model, a powered yaw MPC strategy is designed to calculate the optimal thrust command for each electric propeller under slipstream influence. Fi-nally, flight experiments and MATLAB-OpenVSP co-simulation are conducted to verify the effectiveness of the proposed control strategy and its feasibility in practical engineering applications. Simulation results demonstrate that, compared to the model predictive control strategy without considering slipstream effects, the proposed strategy reduces the yaw angle track-ing error by 21.42% and decreases differential thrust energy consumption by 15.45%.
文章导航

/