薄壁带网格内筋铝合金壳体旋压成型及力学性能研究

  • 李昊霖 ,
  • 陈洪胜 ,
  • 柴斐 ,
  • 梁杰 ,
  • 王保东 ,
  • 聂慧慧 ,
  • 袁珂
展开
  • 1. 太原理工大学
    2. 山西众立法兰有限公司

收稿日期: 2025-03-17

  修回日期: 2025-06-16

  网络出版日期: 2025-06-20

基金资助

山西省专利转化项目;山西省基础研究计划项目;中央领导地方科技发展资金项目;山西省重点研发计划项目;山西省忻州市重点研发计划项目

Thin-walled aluminum alloy shell with mesh inner ribs spinning forming and mechanical properties study

  • LI Hao-Lin ,
  • CHEN Hong-Sheng ,
  • CHAI Fei ,
  • LIANG Jie ,
  • WANG Bao-Dong ,
  • NIE Hui-Hui ,
  • YUAN Ke
Expand

Received date: 2025-03-17

  Revised date: 2025-06-16

  Online published: 2025-06-20

摘要

薄壁铝合金壳体因其轻量化等特点在航空航天、水下装备等领域具有广泛需求,在壳体内部加装内筋可以提高其整体强度。本文通过设计分瓣式芯模结构,采用强力错距旋压方法制备了带网格内筋的薄壁铝合金壳体。基于Abaqus数值模拟方法结合实验探究了不同旋压温度在网格内筋成型过程中铝合金内部的塑性变形机理,对成筋区域的微纳力学性能和壳体的拉伸强度进行测试,结合微观组织、断口形貌对其强韧化机理进行探究。结果表明:不同旋压温度下,铝合金晶粒形态和取向变化较小,呈{001}取向的带状晶粒表现出明显的择优取向;随着旋压温度的升高,呈典型的立方Cube织构,但织构强度从5.31降至3.92。旋压温度对壳体内、外表面等效应变分布均匀性具有显著影响,壳体的等效应变数值随着旋压温度的升高而降低。此外,随着温度的升高(室温至380℃),细晶强化的作用弱化,使壳体的屈服强度从207.2MPa提升至244.1MPa,伸长率从15.7%提升至21.6%。当温度升高至420℃时,由于硬质相的不均匀分布等因素,壳体的伸长率显著下降,TIR处断裂位置在网格筋根部断裂。

本文引用格式

李昊霖 , 陈洪胜 , 柴斐 , 梁杰 , 王保东 , 聂慧慧 , 袁珂 . 薄壁带网格内筋铝合金壳体旋压成型及力学性能研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31981

Abstract

Thin-walled aluminum alloy shells have extensive demands in aerospace, subsea equipment, and other fields be-cause of their lightweight and other properties. Incorporating inner ribs within the shell can enhance its overall struc-tural strength. In this study, a thin-walled aluminum alloy shell with a meshed inner ribs was fabricated by designing a split mandrel structure and employing a powerful staggered spinning technique. Using the Abaqus numerical simulation method and integrating experimental investigations, this study explored the plastic deformation mecha-nisms within aluminum alloy during the formation of meshed inner ribs at different spinning temperatures. The mi-cro-nano mechanical properties of the reinforced regions and the tensile strength of the shell were characterized, and the strengthening-toughening mechanisms were investigated by correlating microstructural observations with fracture surface morphology analysis The results indicate that the morphology and orientation of aluminum alloy grains undergo minimal changes under different spinning temperatures. The ribbon-shaped grains with the {001} orientation exhibit a pronounced preferred orientation. As the spinning temperature increases, the texture is typical cube texture, yet the texture intensity decreases from 5.31 to 3.92. The spinning temperature exerts a significant influence on the uniformity of the equivalent strain distribution on the inner and outer surfaces of the shell. Specifi-cally, the equivalent strain value of the shell diminishes as the spinning temperature rises. Additionally, with the temperature increasing (from room temperature to 380 °C), the strengthening effect of fine grains weakens. Conse-quently, the yield strength of the shell increases from 207.2 MPa to 244.1 MPa, and the elongation increases from 15.7% to 21.6%. However, when the temperature reaches 420 °C, the elongation of the shell decreases substantial-ly due to factors such as the non-uniform distribution of hard phases. The fracture location at theTIR occurs at the root of the meshed rib.

参考文献

[1] 王凤琪, 于忠奇, 孟烨晖, et al. 复杂内筋铝筒段旋压变形规律和再结晶组织演变数值仿真 [J]. 航空学报, 2023, 44(09): 92-102.
WANG F Q, YU Z Q, MENG Y H, et al. Defor-mation mechanism and recrystallization microstructu-re evolution of aluminum stiffened cylinder during hot flow spinning based on numerical simulation [J].Acta Aeronauticaet Astronautica Sinica,2023,44(9):627341 (in Chinese).doi:10. 7527/S1000-6893.2022. 27341
[2] Zeng X, Fan X G, Li H W, et al. Die filling mec-hanism in flow forming of thin-walled tubular partswith cross inner ribs [J]. Journal of Manufacturing Processes, 2020, 58: 832-844.
[3] 王文煜, 李锋, 任飞翔, et al. 轻质高强复合材料网格加筋壳体结构设计方法及力学性能研究进展 [J]. 航空学报, 2024, 45(17): 99-116.
WANG W Y, LI F , REN F X, et al. Research pr-ogress on structural design methods andmechanical properties of lightweight high-strength composite la-ttice stiffened shell structure [J]. Acta AeronauticaetAstronautica Sinica, 2024, 45(17): 530001 (in Ch-inese). doi: 10.7527/S1000-6893. 2024. 30001
[4] 林忠钦, 于忠奇, 戴冬华, et al. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望 [J]. 航空学报, 2023, 44(09): 6-29.
LIN Z Q, YU Z Q, DAI D H, et al. Developmentand prospect of metal spinning Additivehy bridmanufacturing technology for complex thin-walled comp-onent with highribs[J]. Acta Aeronauticaet Astrona-utica Sinica, 2023, 44(9): 627493 (in Chinese). doi: 10. 7527/S1000-6893. 2022.27493
[5] Zhou Y, Zhao Y, Yu Z, et al. Numerical Simulationof Stagger Spinning of Cylindrical Part with Cross Inner Ribs交叉内筋薄壁筒体错距旋压成形数值仿真 [J]. Shanghai Jiaotong Daxue Xuebao/Journal ofShanghai Jiaotong University, 2022, 56(1): 62-69.
[6] Music O, Allwood J M, Kawai K. A review of themechanics of metal spinning [J]. Journal of Materi-als Processing Technology, 2010, 210(1): 3-23.
[7] 司林林. 7075铝合金薄壁壳体热旋压成型工艺研究 [D], 2019.
Si L L.Study on Hot Spinning Forming of 7075 AluminumAlloy Thin-walled Shell [D]. (in Chinese)
[8] Marini D, Corney J. A methodology for assessing the feasibility of producing components by flow forming [J]. Production and Manufacturing Research, 2017, 5(1): 210-234.
[9] Pan J, Zhang W, Li H, et al. Microstructure chara-cteristics, yield asymmetry and fracture mechanism of the fine grained thin-wall Mg-6.03Zn-0.55Zr tub-es fabricated by hot spinning [J]. Journal of Alloysand Compounds, 2024, 983.
[10] Zeng X, Fan X G, Li H W, et al. Heterogeneous microstructure and mechanical property of thin- walled tubular part with cross inner ribs produced by flow forming [J]. Materials Science and Engineering: A, 2020, 790.
[11] Zhang Y, Wang F, Dong J, et al. Grain refinement and orientation of AZ31B magnesium alloy in hot
flow forming under different thickness reduction [J].Journal of Materials Science and Technology, 2018,34(7): 1091-1102.
[12] Wang L, Long H. Investigation of material deform-ation in multi-pass conventional metal spinning [J]. Materials and Design, 2011, 32(5): 2891-2899.
[13] Zhao Y, Wan X, Gao L, et al. Theoretical predicti-on of sheet metal wrinkling based on the potential function analysis [J]. Journal of Manufacturing Sci-ence and Engineering, Transactions of the ASME, 2018, 140(10).
[14] Wong C C. Incremental forming of solid cylindricalcomponents using flow forming principles [J]. Jour-nal of Materials Processing Technology, 2004, 153-154(1-3): 60-66.
[15] Wang Y, Yang B, Gao M, et al. Microstructure ev-olution, mechanical property response and strengthe-ning mechanism induced by compositional effects inAl–6 Mg alloys [J]. Materials and Design, 2022, 220.
[16] Li S-m, Li Y-d, Zhang Y, et al. Effect of intermet-allic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(2):167-174.
[17] Zhan X, Tang J, Tu W, et al. Evolution of microst-ructure, texture and formability of Al–Mg–Si alloysat different hot rolling finish temperatures [J]. Jour-nal of Materials Research and Technology, 2024, 32:318-337.
[18] Yu J, Zhao G, Cui W, et al. Microstructural evolut-ion and mechanical properties of welding seams in aluminum alloy profiles extruded by a porthole die under different billet heating temperatures and extr-usion speeds [J]. Journal of Materials Processing Technology, 2017, 247: 214-222.
[19] Tang J, Chen L, Fan X, et al. Co-extrusion of dis-similar AA6063/AA7075 by porthole die at various temperatures [J]. Journal of Alloys and Compounds,2018, 764: 162-169.
[20] Calcagnotto M, Ponge D, Demir E, et al. Orientati-on gradients and geometrically necessary dislocatio-ns in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Materials Science and Engi-neering: A, 2010, 527(10-11): 2738-2746.
[21] Lv Y, Ding Y, Cui H, et al. Investigation of micro-scopic residual stress and its effects on stress corr-osion behavior of NiAl bronze alloy using in situ neutron diffraction/EBSD/tensile corrosion experime-nt [J]. Materials Characterization, 2020, 164.
[22] Yan Z, Wang D, He X, et al. Deformation behavi-ors and cyclic strength assessment of AZ31B magn-esium alloy based on steady ratcheting effect [J]. Materials Science and Engineering: A, 2018, 723: 212-220.
[23] Fan X, Li Y, Xu C, et al. Improved mechanical anisotropy and texture optimization of a 3xx alumin- um alloy by differential temperature rolling [J]. Ma-terials Science and Engineering: A, 2021, 799.
[24] Dhal A, Panigrahi S K, Shunmugam M S. Insight
into the microstructural evolution during cryo-severeplastic deformation and post-deformation annealing of aluminum and its alloys [J]. Journal of Alloys and Compounds, 2017, 726: 1205-1219.
[25] Xia Q, Long J, Xiao G, et al. Deformation mecha-nism of ZK61 magnesium alloy cylindrical parts w-ith longitudinal inner ribs during hot backward flowforming [J]. Journal of Materials Processing Techn-ology, 2021, 296.
[26] Li S, Zhu Z, Zhao Y, et al. Numerical simulation of ultrasonic field and its acoustoplastic influence on ribbed cylindrical parts in ultrasonic-assisted fl- ow spinning process [J]. Journal of Manufacturing Processes, 2024, 121: 408-426.
[27] 郑可, 李传维, 顾剑锋. 固溶态和时效态7075铝合金的微纳米压痕力学行为 [J]. 材料热处理学报, 2023, 44(01): 39-48.
ZHENG K,LI C W,GU J F.Micro-nano indentation mechanical behavior of 7075 aluminum alloy in so-lution and aging states [J]. Transactions of Materia-lsand Heat Treatment,2023,44(1):39-48.
[28] Gubicza J, Chinh N Q, Csanadi T, et al. Microstru-cture and strength of severely deformed fcc metals [J]. Materials Science and Engineering: A, 2007, 462(1-2): 86-90.
[29] Wang Z, Oliveira J P, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Micr-ostructure, porosity and mechanical properties [J]. Optics and Laser Technology, 2019, 111: 58-65.
[30] Shokuhfar A, Nejadseyfi O. A comparison of the e-ffects of severe plastic deformation and heat treatm-ent on the tensile properties and impact toughness of aluminum alloy 6061 [J]. Materials Science and Engineering: A, 2014, 594: 140-148.
文章导航

/