[1] 王凤琪, 于忠奇, 孟烨晖, et al. 复杂内筋铝筒段旋压变形规律和再结晶组织演变数值仿真 [J]. 航空学报, 2023, 44(09): 92-102.
WANG F Q, YU Z Q, MENG Y H, et al. Defor-mation mechanism and recrystallization microstructu-re evolution of aluminum stiffened cylinder during hot flow spinning based on numerical simulation [J].Acta Aeronauticaet Astronautica Sinica,2023,44(9):627341 (in Chinese).doi:10. 7527/S1000-6893.2022. 27341
[2] Zeng X, Fan X G, Li H W, et al. Die filling mec-hanism in flow forming of thin-walled tubular partswith cross inner ribs [J]. Journal of Manufacturing Processes, 2020, 58: 832-844.
[3] 王文煜, 李锋, 任飞翔, et al. 轻质高强复合材料网格加筋壳体结构设计方法及力学性能研究进展 [J]. 航空学报, 2024, 45(17): 99-116.
WANG W Y, LI F , REN F X, et al. Research pr-ogress on structural design methods andmechanical properties of lightweight high-strength composite la-ttice stiffened shell structure [J]. Acta AeronauticaetAstronautica Sinica, 2024, 45(17): 530001 (in Ch-inese). doi: 10.7527/S1000-6893. 2024. 30001
[4] 林忠钦, 于忠奇, 戴冬华, et al. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望 [J]. 航空学报, 2023, 44(09): 6-29.
LIN Z Q, YU Z Q, DAI D H, et al. Developmentand prospect of metal spinning Additivehy bridmanufacturing technology for complex thin-walled comp-onent with highribs[J]. Acta Aeronauticaet Astrona-utica Sinica, 2023, 44(9): 627493 (in Chinese). doi: 10. 7527/S1000-6893. 2022.27493
[5] Zhou Y, Zhao Y, Yu Z, et al. Numerical Simulationof Stagger Spinning of Cylindrical Part with Cross Inner Ribs交叉内筋薄壁筒体错距旋压成形数值仿真 [J]. Shanghai Jiaotong Daxue Xuebao/Journal ofShanghai Jiaotong University, 2022, 56(1): 62-69.
[6] Music O, Allwood J M, Kawai K. A review of themechanics of metal spinning [J]. Journal of Materi-als Processing Technology, 2010, 210(1): 3-23.
[7] 司林林. 7075铝合金薄壁壳体热旋压成型工艺研究 [D], 2019.
Si L L.Study on Hot Spinning Forming of 7075 AluminumAlloy Thin-walled Shell [D]. (in Chinese)
[8] Marini D, Corney J. A methodology for assessing the feasibility of producing components by flow forming [J]. Production and Manufacturing Research, 2017, 5(1): 210-234.
[9] Pan J, Zhang W, Li H, et al. Microstructure chara-cteristics, yield asymmetry and fracture mechanism of the fine grained thin-wall Mg-6.03Zn-0.55Zr tub-es fabricated by hot spinning [J]. Journal of Alloysand Compounds, 2024, 983.
[10] Zeng X, Fan X G, Li H W, et al. Heterogeneous microstructure and mechanical property of thin- walled tubular part with cross inner ribs produced by flow forming [J]. Materials Science and Engineering: A, 2020, 790.
[11] Zhang Y, Wang F, Dong J, et al. Grain refinement and orientation of AZ31B magnesium alloy in hot
flow forming under different thickness reduction [J].Journal of Materials Science and Technology, 2018,34(7): 1091-1102.
[12] Wang L, Long H. Investigation of material deform-ation in multi-pass conventional metal spinning [J]. Materials and Design, 2011, 32(5): 2891-2899.
[13] Zhao Y, Wan X, Gao L, et al. Theoretical predicti-on of sheet metal wrinkling based on the potential function analysis [J]. Journal of Manufacturing Sci-ence and Engineering, Transactions of the ASME, 2018, 140(10).
[14] Wong C C. Incremental forming of solid cylindricalcomponents using flow forming principles [J]. Jour-nal of Materials Processing Technology, 2004, 153-154(1-3): 60-66.
[15] Wang Y, Yang B, Gao M, et al. Microstructure ev-olution, mechanical property response and strengthe-ning mechanism induced by compositional effects inAl–6 Mg alloys [J]. Materials and Design, 2022, 220.
[16] Li S-m, Li Y-d, Zhang Y, et al. Effect of intermet-allic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(2):167-174.
[17] Zhan X, Tang J, Tu W, et al. Evolution of microst-ructure, texture and formability of Al–Mg–Si alloysat different hot rolling finish temperatures [J]. Jour-nal of Materials Research and Technology, 2024, 32:318-337.
[18] Yu J, Zhao G, Cui W, et al. Microstructural evolut-ion and mechanical properties of welding seams in aluminum alloy profiles extruded by a porthole die under different billet heating temperatures and extr-usion speeds [J]. Journal of Materials Processing Technology, 2017, 247: 214-222.
[19] Tang J, Chen L, Fan X, et al. Co-extrusion of dis-similar AA6063/AA7075 by porthole die at various temperatures [J]. Journal of Alloys and Compounds,2018, 764: 162-169.
[20] Calcagnotto M, Ponge D, Demir E, et al. Orientati-on gradients and geometrically necessary dislocatio-ns in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Materials Science and Engi-neering: A, 2010, 527(10-11): 2738-2746.
[21] Lv Y, Ding Y, Cui H, et al. Investigation of micro-scopic residual stress and its effects on stress corr-osion behavior of NiAl bronze alloy using in situ neutron diffraction/EBSD/tensile corrosion experime-nt [J]. Materials Characterization, 2020, 164.
[22] Yan Z, Wang D, He X, et al. Deformation behavi-ors and cyclic strength assessment of AZ31B magn-esium alloy based on steady ratcheting effect [J]. Materials Science and Engineering: A, 2018, 723: 212-220.
[23] Fan X, Li Y, Xu C, et al. Improved mechanical anisotropy and texture optimization of a 3xx alumin- um alloy by differential temperature rolling [J]. Ma-terials Science and Engineering: A, 2021, 799.
[24] Dhal A, Panigrahi S K, Shunmugam M S. Insight
into the microstructural evolution during cryo-severeplastic deformation and post-deformation annealing of aluminum and its alloys [J]. Journal of Alloys and Compounds, 2017, 726: 1205-1219.
[25] Xia Q, Long J, Xiao G, et al. Deformation mecha-nism of ZK61 magnesium alloy cylindrical parts w-ith longitudinal inner ribs during hot backward flowforming [J]. Journal of Materials Processing Techn-ology, 2021, 296.
[26] Li S, Zhu Z, Zhao Y, et al. Numerical simulation of ultrasonic field and its acoustoplastic influence on ribbed cylindrical parts in ultrasonic-assisted fl- ow spinning process [J]. Journal of Manufacturing Processes, 2024, 121: 408-426.
[27] 郑可, 李传维, 顾剑锋. 固溶态和时效态7075铝合金的微纳米压痕力学行为 [J]. 材料热处理学报, 2023, 44(01): 39-48.
ZHENG K,LI C W,GU J F.Micro-nano indentation mechanical behavior of 7075 aluminum alloy in so-lution and aging states [J]. Transactions of Materia-lsand Heat Treatment,2023,44(1):39-48.
[28] Gubicza J, Chinh N Q, Csanadi T, et al. Microstru-cture and strength of severely deformed fcc metals [J]. Materials Science and Engineering: A, 2007, 462(1-2): 86-90.
[29] Wang Z, Oliveira J P, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Micr-ostructure, porosity and mechanical properties [J]. Optics and Laser Technology, 2019, 111: 58-65.
[30] Shokuhfar A, Nejadseyfi O. A comparison of the e-ffects of severe plastic deformation and heat treatm-ent on the tensile properties and impact toughness of aluminum alloy 6061 [J]. Materials Science and Engineering: A, 2014, 594: 140-148.