激光选区增材制造钛合金构件内部微结构设计及力学性能研究

  • 袁也 ,
  • 陈洪胜 ,
  • 梁杰 ,
  • 郑留伟 ,
  • 王文先 ,
  • 王璟 ,
  • 张鑫磊
展开
  • 1. 太原理工大学
    2. 山西众立法兰有限公司

收稿日期: 2025-01-07

  修回日期: 2025-06-12

  网络出版日期: 2025-06-13

基金资助

山西省自然科学研究面上项目;山西省专利转化计划项目;山西省忻州市重点研发计划项目

Research on Microstructure design and mechanical properties of titanium alloy components for laser selective additive manufacturing

  • YUAN Ye ,
  • CHEN Hong-Sheng ,
  • LIANG Jie ,
  • ZHENG Liu-Wei ,
  • WANG Wen-Xian ,
  • WANG Jing ,
  • ZHANG Xin-Lei
Expand

Received date: 2025-01-07

  Revised date: 2025-06-12

  Online published: 2025-06-13

摘要

钛合金具有高强、耐高温等特点在航空航天等领域具有广泛的应用前景,钛合金结构件的轻量化是未来的发展趋势。本文基于拱桥桥拱高承压的结构优势结合选区激光增材制造的工艺特点,设计并制备了内部不同圆弧拱结构的钛合金块体,通过室温的弯曲、拉伸和压缩等性能测试,探究了制备块体的力学性能和断裂失效机理。研究结果表明:圆弧拱结构减轻构件重量16%至40%。圆弧拱半径1mm,拱高0.66mm的试样表现出优异的力学性能,抗拉强度可达到1558.0MPa;抗弯强度可达到1506.7MPa;抗压强度可达到2040.9MPa。拉伸断口呈现大量韧窝,表现为韧脆性断裂;压缩断口呈现灰白色的条带,表现为脆性倾斜剪切断裂。圆弧拱结构有效降低构件质量的同时保证了力学性能,为轻量化结构设计提供了一种新策略。

本文引用格式

袁也 , 陈洪胜 , 梁杰 , 郑留伟 , 王文先 , 王璟 , 张鑫磊 . 激光选区增材制造钛合金构件内部微结构设计及力学性能研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31777

Abstract

Titanium alloy has the characteristics of high strength, high temperature resistance and has a wide range of application prospects in aerospace and other fields, and the lightweight of titanium alloy structural parts is the future development trend. In this paper, titanium alloy blocks with different arc arch structures were designed and fabricated based on the structural advantages of high arch pressure of arch Bridges combined with the technological characteristics of selected laser additive manufacturing. The me-chanical properties and fracture failure mechanism of the fabricated blocks were investigated through bending, stretching and compression tests at room temperature. The results show that the arc arch structure can reduce the weight of the component by 16% to 40%. The sample with arc arch radius of 1mm and arch height of 0.66mm showed excellent mechanical properties, and the tensile strength reached 1558.0MPa. The bending strength can reach 1506.7MPa; The compressive strength can reach 2040.9MPa. The tensile fracture presents a large number of dimples, which is characterized by ductile brittle fracture. The com-pression fracture shows grayish white bands, which are brittle inclined shear fracture. The circular arch structure can effectively reduce the weight of the component and guarantee the mechanical properties at the same time, which provides a new strategy for lightweight structure design.

参考文献

[1]MAGNUS C, TARRANT T, OREKUNRIN A.Tribologi-cal behaviour of novel network-like Ti6Al4V-Ti3SiC2-TiC metal-ceramic composite structure[J]. Wear, 2025, 562-563: 205645.[J].Wear, 2025, 562-563:205645-
[2]DU X Y, CHEN J B, SHE Y, et al.Effect of process pa-rameter optimization on morphology and mechanical properties of Ti6Al4V alloy produced by selective laser melting[J].Progress in Natural Science: Materials Inter-national, 2023, 33(6):911-917
[3]SRIKANTH M, CHARAN B S, VENU D M, et al.En-hancement of high temperature oxidation and hot corro-sion resistance behaviors of selective laser melted Ti6Al4V by ultrasonic shot peening[J]. Materials Chem-istry and Physics, 2025, 332: 130170.[J].Materials Chemistry and Physics, 2025, 332:130170-
[4]张纪奎, 孔祥艺, 马少俊, 等.激光增材制造高强高韧钛合金力学性能及航空主承力结构应用分析[J].航空学报, 2021, 42(10):525430-
[5]HAQ A U, NARALA S K R.Experimental and numerical investigation on the ballistic impact performance of sandwich panels with additively manufactured honey-comb cores[J].Aerospace Science and Technology, 2024, 155(P3):109733-
[6]WU Y Z, FANG J G, WU C, et al.Additively manufac-tured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorp-tion[J]. International Journal of Mechanical Sciences, 2023, 246: 108102.[J].International Journal of Mechanical Sciences, 2023, 246:108102-
[7]KORKMAZ M E, Kumar M G, ROBAK G, et al.Devel-opment of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges[J]. Journal of Manufacturing Processes, 2022, 81: 1040-1063.[J].Journal of Manufacturing Processes, 2022, 81:1040-1063
[8]张卫红, 周涵, 李韶英, 等.航天高性能薄壁构件的材料-结构一体化设计综[J].航空学报, 2023, 44(09):627428-
[9]张少平, 郭会明, 高彤, 等.基于先进激光加工技术的下一代航空发动机跨尺度整体式承力薄壁构件设计方法与应用[J].航空学报, 2024, 45(13):630037-
[10]李涤尘, 鲁中良, 田小永, 等.增材制造——面向航空航天制造的变革性技术[J].航空学报, 2022, 43(4):525387-
[11]SHAH S W A, ALI S, ULLAH H, et al.Material char-acterization of Ti6Al4V alloy additively manufactured using selective laser melting technique[J]. Journal of Materials Research and Technology, 2024, 33: 1756-1763.[J].Journal of Materials Research and Technology, 2024, 33:1756-1763
[12]REN X P, LI H Q, GUO H, et al.A comparative study on mechanical properties of Ti–6Al–4V alloy processed by additive manufacturing vs. traditional processing[J]. Materials Science & Engineering A, 2021, 817: 151384[J].Materials Science & Engineering A, 2021, 817:151384-
[13]CHEN X C, Chen H S, Nie H H, et al.Research on hot deformation behavior and microstructure characteriza-tion of the NiTi alloy fabricated by wire arc additive manufacturing[J]. Journal of Materials Research and Technology, 2024, 33: 9180-9194.[J].Journal of Materials Research and Technology, 2024, 33:9180-9194
[14]王茂松, 杜宇雷.增材制造钛铝合金研究进展[J].航空学报, 2021, 42(7):625263-
[15]XIE Z H, FU X Q, ZHANG Q, et al.Ballistic perfor-mance of additive manufacturing metal lattice struc-tures[J]. Thin-Walled Structures, 2025, 208: 112763.[J].Thin-Walled Structures, 2025, 208:112763-
[16]ZHENG Q, CHEN H S, ZHOU J, et al.Lightweight design of lattice structure of boron steel prepared by se-lective laser melting[J]. Journal of Materials Research and Technology, 2024, 30: 7523-7532.[J].Journal of Materials Research and Technology, 2024, 30:7523-7532
[17]LEARY M, MAZUR M, ELAMBASSERIL J, et al.Selective laser melting (SLM) of AlSi12Mg lattice structures[J]. Materials & Design, 2016, 98: 344-357.[J].Materials & Design, 2016, 98:344-357
[18]YANG L, MERTENS R, FERRUCCI M, et al.Continu-ous graded Gyroid cellular structures fabricated by se-lective laser melting: Design, manufacturing and me-chanical properties[J]. Materials & Design, 2019, 162: 394-404.[J].Materials & Design, 2019, 162:394-404
[19]SUN W T, FU Y, MA H, et al.High-strength AlCo-CrFeNi2.1 eutectic high entropy alloy skeleton with hol-low brick wall structures by selective laser melting[J]. Materials Science & Engineering A, 2023, 887: 145757[J].Materials Science & Engineering A, 2023, 887:145757-
[20]YAN C Z, HAO L, HUSSEIN A, et al.Advanced light-weight 316L stainless steel cellular lattice structures fab-ricated via selective laser melting[J]. Materials & De-sign, 2014, 55: 533-541.[J].Materials & Design, 2014, 55:533-541
[21]BAEL S V, KERCKHOFS G, MOESEN M, et al.Mi-cro-CT-based improvement of geometrical and mechan-ical controllability of selective laser melted Ti6Al4V po-rous structures[J].Materials Science & Engineering A, 2011, 528(24):7423-7431
[22]DOU H, YE W G, ZHANG D H, et al.Comparative study on in-plane compression properties of 3D printed continuous carbon fiber reinforced composite honey-comb and aluminum alloy honeycomb[J]. Thin-Walled Structures, 2022, 176: 109335.[J].Thin-Walled Structures, 2022, 176:109335-
[23]MASKERY I, ABOULKHAIR N T, AREMU A O, et al.A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective la-ser melting[J]. Materials Science & Engineering A, 2016, 670: 264-274.[J].Materials Science & Engineering A, 2016, 670:264-274
文章导航

/