[1]MAGNUS C, TARRANT T, OREKUNRIN A.Tribologi-cal behaviour of novel network-like Ti6Al4V-Ti3SiC2-TiC metal-ceramic composite structure[J]. Wear, 2025, 562-563: 205645.[J].Wear, 2025, 562-563:205645-
[2]DU X Y, CHEN J B, SHE Y, et al.Effect of process pa-rameter optimization on morphology and mechanical properties of Ti6Al4V alloy produced by selective laser melting[J].Progress in Natural Science: Materials Inter-national, 2023, 33(6):911-917
[3]SRIKANTH M, CHARAN B S, VENU D M, et al.En-hancement of high temperature oxidation and hot corro-sion resistance behaviors of selective laser melted Ti6Al4V by ultrasonic shot peening[J]. Materials Chem-istry and Physics, 2025, 332: 130170.[J].Materials Chemistry and Physics, 2025, 332:130170-
[4]张纪奎, 孔祥艺, 马少俊, 等.激光增材制造高强高韧钛合金力学性能及航空主承力结构应用分析[J].航空学报, 2021, 42(10):525430-
[5]HAQ A U, NARALA S K R.Experimental and numerical investigation on the ballistic impact performance of sandwich panels with additively manufactured honey-comb cores[J].Aerospace Science and Technology, 2024, 155(P3):109733-
[6]WU Y Z, FANG J G, WU C, et al.Additively manufac-tured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorp-tion[J]. International Journal of Mechanical Sciences, 2023, 246: 108102.[J].International Journal of Mechanical Sciences, 2023, 246:108102-
[7]KORKMAZ M E, Kumar M G, ROBAK G, et al.Devel-opment of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges[J]. Journal of Manufacturing Processes, 2022, 81: 1040-1063.[J].Journal of Manufacturing Processes, 2022, 81:1040-1063
[8]张卫红, 周涵, 李韶英, 等.航天高性能薄壁构件的材料-结构一体化设计综[J].航空学报, 2023, 44(09):627428-
[9]张少平, 郭会明, 高彤, 等.基于先进激光加工技术的下一代航空发动机跨尺度整体式承力薄壁构件设计方法与应用[J].航空学报, 2024, 45(13):630037-
[10]李涤尘, 鲁中良, 田小永, 等.增材制造——面向航空航天制造的变革性技术[J].航空学报, 2022, 43(4):525387-
[11]SHAH S W A, ALI S, ULLAH H, et al.Material char-acterization of Ti6Al4V alloy additively manufactured using selective laser melting technique[J]. Journal of Materials Research and Technology, 2024, 33: 1756-1763.[J].Journal of Materials Research and Technology, 2024, 33:1756-1763
[12]REN X P, LI H Q, GUO H, et al.A comparative study on mechanical properties of Ti–6Al–4V alloy processed by additive manufacturing vs. traditional processing[J]. Materials Science & Engineering A, 2021, 817: 151384[J].Materials Science & Engineering A, 2021, 817:151384-
[13]CHEN X C, Chen H S, Nie H H, et al.Research on hot deformation behavior and microstructure characteriza-tion of the NiTi alloy fabricated by wire arc additive manufacturing[J]. Journal of Materials Research and Technology, 2024, 33: 9180-9194.[J].Journal of Materials Research and Technology, 2024, 33:9180-9194
[14]王茂松, 杜宇雷.增材制造钛铝合金研究进展[J].航空学报, 2021, 42(7):625263-
[15]XIE Z H, FU X Q, ZHANG Q, et al.Ballistic perfor-mance of additive manufacturing metal lattice struc-tures[J]. Thin-Walled Structures, 2025, 208: 112763.[J].Thin-Walled Structures, 2025, 208:112763-
[16]ZHENG Q, CHEN H S, ZHOU J, et al.Lightweight design of lattice structure of boron steel prepared by se-lective laser melting[J]. Journal of Materials Research and Technology, 2024, 30: 7523-7532.[J].Journal of Materials Research and Technology, 2024, 30:7523-7532
[17]LEARY M, MAZUR M, ELAMBASSERIL J, et al.Selective laser melting (SLM) of AlSi12Mg lattice structures[J]. Materials & Design, 2016, 98: 344-357.[J].Materials & Design, 2016, 98:344-357
[18]YANG L, MERTENS R, FERRUCCI M, et al.Continu-ous graded Gyroid cellular structures fabricated by se-lective laser melting: Design, manufacturing and me-chanical properties[J]. Materials & Design, 2019, 162: 394-404.[J].Materials & Design, 2019, 162:394-404
[19]SUN W T, FU Y, MA H, et al.High-strength AlCo-CrFeNi2.1 eutectic high entropy alloy skeleton with hol-low brick wall structures by selective laser melting[J]. Materials Science & Engineering A, 2023, 887: 145757[J].Materials Science & Engineering A, 2023, 887:145757-
[20]YAN C Z, HAO L, HUSSEIN A, et al.Advanced light-weight 316L stainless steel cellular lattice structures fab-ricated via selective laser melting[J]. Materials & De-sign, 2014, 55: 533-541.[J].Materials & Design, 2014, 55:533-541
[21]BAEL S V, KERCKHOFS G, MOESEN M, et al.Mi-cro-CT-based improvement of geometrical and mechan-ical controllability of selective laser melted Ti6Al4V po-rous structures[J].Materials Science & Engineering A, 2011, 528(24):7423-7431
[22]DOU H, YE W G, ZHANG D H, et al.Comparative study on in-plane compression properties of 3D printed continuous carbon fiber reinforced composite honey-comb and aluminum alloy honeycomb[J]. Thin-Walled Structures, 2022, 176: 109335.[J].Thin-Walled Structures, 2022, 176:109335-
[23]MASKERY I, ABOULKHAIR N T, AREMU A O, et al.A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective la-ser melting[J]. Materials Science & Engineering A, 2016, 670: 264-274.[J].Materials Science & Engineering A, 2016, 670:264-274