RGB-T Unmanned Aerial Vehicle (UAV) object tracking enhances tracking robustness in complex environments by fusing comple-mentary information from visible (RGB) and thermal infrared (TIR) modalities. However, existing methods neglect the noise inter-ference caused by modality gaps, which weakens the effectiveness of cross-modal feature complementarity and degrades the power of feature representation, limiting the performance of RGB-T UAV trackers. To address this issue, a feature-cooperative reconstruc-tion-based tracker is proposed. The core of the proposed method is to develop a feature-cooperative reconstruction module, consist-ing of a cross-modal interaction encoder and a feature reconstruction decoder. Specifically, the cross-modal interaction encoder em-ploys an adaptive feature interaction strategy to extract critical complementary information from the auxiliary modality while effec-tively suppressing cross-modal noise interference. The feature reconstruction decoder then utilizes the query features from the encod-er to guide the reconstruction of features, preserving modality-specific information while incorporating cross-modal complementary details, thereby enhancing feature representation. Additionally, to enhance target localization accuracy in dynamic scenes, a cross-modal location cue fusion module is proposed to integrate search regions from different modalities, thereby providing more precise localization cues. Finally, extensive experimental evaluations on two RGB-T UAV object tracking benchmark datasets (i.e., VTUAV and HiAL) as well as the LasHeR dataset are conducted. The results demonstrate that the proposed method significantly outperforms existing methods. Concretely, the proposed method achieves the improvements of 9.9% in success rate and 9.0% in precision, re-spectively, compared to HMFT on the VTUAV dataset.
[1]陈琳, 刘允刚.面向无人机的视觉目标跟踪算法:综述与展望[J].信息与控制, 2022, 51(1):23-40
[2]CHEN L, LIU Y G.UAV visual target tracking algorithms:Review and future prospect[J].Information and Control, 2022, 51(1):23-40
[3]褚昭晨, 宋韬, 金忍, 等.基于视觉图像的空对空多无人机目标跟踪[J].航空学报, 2024, 45(14):20-35
[4]CHU Z C, SONG T, JIN R, et al.Vision-based air-to-air multi-UAVs tracking[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(14):20-35
[5]薛远亮, 金国栋, 谭力宁, 等.基于多尺度融合的自适应无人机目标跟踪算法[J].航空学报, 2023, 44(1):209-226
[6]XUE Y L, JIN G D, TAN L N, et al.Adaptive UAV target tracking algorithm based on multi-scale fusion[J].Acta Aeronautica et Astronautica Sinica, 2023, 44(1):209-226
[7]刘贞报, 马博迪, 高红岗, 等.基于形态自适应网络的无人机目标跟踪方法[J].航空学报, 2021, 42(4):487-500
[8]LIU Z B, MA B D, GAO H G, et al.Adaptive morphological network based UAV target tracking algorithm[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(4):487-500
[9]BHAT G, DANELLJAN M, GOOL L V, et al.Learning Discriminative Model Prediction for Tracking[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 6182-6191.
[10]DANELLJAN M, BHAT G, KHAN F S, et al.Atom: Accurate tracking by overlap maximization[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4660-4669.
[11]ZHU J, LAI S, CHEN X, et al.Visual Prompt Multi-Modal Tracking[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 9516-9526.
[12]ZHANG P, ZHAO J, WANG D, et al.Visible-thermal UAV tracking: A large-scale benchmark and new baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 8886-8895.
[13]CAO B, GUO J, ZHU P, et al.Bi-directional adapter for multimodal tracking[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(2): 927-935.
[14]FAN H, YU Z, WANG Q, et al.QueryTrack: Joint-modality Query Fusion Network for RGBT Tracking[J].IEEE Transactions on Image Processing, 2024, 33(1):3187-3199
[15]HUI T, XUN Z, PENG F, et al.Bridging search region interaction with template for rgb-t tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 13630-13639.
[16]WANG Y, SUN F, HUANG W, et al.Channel exchanging networks for multimodal and multitask dense image prediction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5):5481-5496
[17]DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [DB/OL]. arXiv prep.[J].rXiv:2010.11929, 2020: 1-22., rint, :-
[18]肖云, 曹丹, 李成龙, 等.基于高空无人机平台的多模态跟踪数据集[J].中国图象图形学报, 2025, 30(02):361-374
[19]XIAO YUN, CAO DAN, LI CHENGLONG, et al.A benchmark dataset for high-altitude UAV multi-modal tracking[J].Journal of Image and Graphics, 2025, 30(02):361-374
[20]LAI P, CHENG G, ZHANG M, et al.NCSiam: Reliable Matching via Neighborhood Consensus for Siamese-Based Object Tracking[J].IEEE Transactions on Image Processing, 2023, 32:6168-6182
[21]XU Y, WANG Z, LI Z, et al.SiamFC++: Towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(07): 12549-12556.
[22]CHEN Z, ZHONG B, LI G, et al.Siamese box adaptive network for visual tracking[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 6668-6677.
[23]ZHANG T, LIU X, ZHANG Q, et al.SiamCDA: Complementarity-and distractor-aware RGB-T tracking based on Siamese network[J].IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(3):1403-1417
[24]HOU X, XING J, QIAN Y, et al.SDSTrack: Self-Distillation Symmetric Adapter Learning for Multi-Modal Visual Object Tracking[C]//Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 26551-26561.
[25]YE B, CHANG H, MA B, et al.Joint feature learning and relation modeling for tracking: A one-streamframework[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2022: 341-357.
[26]LAW H, DENG J.Cornernet: Detecting objects as paired keypoints[C]//Proceedings of the European conference on computer vision. 2018: 734-750.
[27]REZATOFIGHI H, TSOI N, GWAK J, et al.Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF conference on computer vision and patternrecognition. 2019: 658-666.
[28]WU Z, ZHENG J, REN X, et al.Single-model and any-modality for video object tracking[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 19156-19166.
[29]LI C, XUE W, JIA Y, et al.LasHeR: A large-scalehigh-diversity benchmark for RGBT tracking[J].IEEE Transactions on Image Processing, 2021, 31:392-404
[30]LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[DB/OL]. arXiv prep.[J].rXiv:1711.05101, 2017: 1-19., rint, :-
[31]GAO Y, LI C, ZHU Y, et al.Deep adaptive fusionnetwork for high performance RGBT tracking[C]//Proceedings of the IEEE/CVF international conferenceon computer vision workshops. 2019: 1-9.
[32]ZHANG P, WANG D, LU H, et al.Learning adaptive attribute-driven representation for real-time RGB-T tracking[J].International Journal of Computer Vision, 2021, 129:2714-2729
[33]KRISTAN M, MATAS J, LEONARDIS A, et al.The seventh visual object tracking VOT2019 challenge results[C]//Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019: 1-36.
[34]XIAO Y, YANG M, LI C, et al.Attribute-based progressive fusion network for rgbt tracking[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022, 36(3): 2831-2838.
[35]LIU L, LI C, XIAO Y, et al.RGBT Tracking via Challenge-Based Appearance Disentanglement and Interaction[J].IEEE Transactions on Image Processing, 2024, 33:1753-1767
[36]ZHANG L, DANELLJAN M, GONZALEZ-GARCIAA, et al.Multi-Modal Fusion for End-to-End RGB-TTracking[C]//Proceedings of the IEEE/CVF International conference on computer vision workshops. 2019:1-10.
[37]ZHANG T, GUO H, JIAO Q, et al.Efficient rgb-t tracking via cross-modality distillation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 5404-5413.
[38]LIU Y, ZHOU D, CAO J, et al.Specific and Collaborative Representations Siamese Network for RGBT Tracking[J].IEEE Sensors Journal, 2024, 24(11):18520-18534