[1] SUN Y, CAO B, ZHU P, et al. Drone-Based RGB-Infrared Cross-Modality Vehicle Detection Via Uncer-tainty-Aware Learning[J]. IEEE Transactions on Cir-cuits and Systems for Video Technology, 2022, 32(10): 6700-6713.
[2] ZHU Y, SUN X, WANG M, et al. Multi-Modal Feature Pyramid Transformer for RGB-Infrared Object Detec-tion[J]. IEEE Transactions on Intelligent Transporta-tion Systems, 2023, 24(9): 9984-9995.
[3] 吴一全, 童康. 基于深度学习的无人机航拍图像小目标检测研究进展[J]. 航空学报, 2024: 1-28.
WU Y Q, TONG K. Research advances on deep learn-ing-based small object detection in UAV aerial imag-es[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 030848 (in Chinese).
[4] SHANG X, LI N, LI D, et al. CCLDet: A Cross-Modality and Cross-Domain Low-Light Detector[J]. IEEE Transactions on Intelligent Transportation Sys-tems, 2025: 1-11.
[5] LI C, SONG D, TONG R, et al. Illumination-aware faster R-CNN for robust multispectral pedestrian de-tection[J]. Pattern Recognition, 2019, 85: 161-171.
[6] LIU X, QI J, CHEN C, et al. Relation-Aware Weight Sharing in Decoupling Feature Learning Network for UAV RGB-Infrared Vehicle Re-Identification[J]. IEEE Transactions on Multimedia, 2024, 26: 9839-9853.
[7] WANG J, XU C, ZHAO C, et al. Multimodal Ob-ject Detection of UAV Remote Sensing Based on Joint Representation Optimization and Specific Information Enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12364-12373.
[8] YUAN M, SHI X, WANG N, et al. Improving RGB-infrared object detection with cascade alignment-guided transformer[J]. Information Fusion, 2024, 105: 102246.
[9] GUAN D, CAO Y, YANG J, et al. Fusion of multispec-tral data through illumination-aware deep neural net-works for pedestrian detection[J]. Information Fusion, 2019, 50: 148-157.
[10] WANG Q, CHI Y, SHEN T, et al. Improving RGB-Infrared Object Detection by Reducing Cross-Modality Redundancy[J]. Remote Sensing, 2022, 14(9): 2020.
[11] SUN X, YU Y, CHENG Q. Low-Rank Multimodal Remote Sensing Object Detection With Frequency Fil-tering Experts[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14.
[12] ZHAO D, SHAO F, ZHANG S, et al. Advanced Ob-ject Detection in Low-Light Conditions: Enhance-ments to YOLOv7 Framework[J]. Remote Sensing, 2024, 16(23): 4493.
[13] HUI Y, WANG J, LI B. WSA-YOLO: Weak-Supervised and Adaptive Object Detection in the Low-Light Environment for YOLOV7[J]. IEEE Transac-tions on Instrumentation and Measurement, 2024, 73: 1-12.
[14] MORAWSKI I, CHEN Y A, LIN Y S, et al. GenISP: Neural ISP for Low-Light Machine Cogni-tion[C]//2022 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition Workshops (CVPRW). 2022: 629-638.
[15] ELGUEBALY T, BOUGUILA N. Finite asymmetric generalized Gaussian mixture models learning for in-frared object detection[J]. Computer Vision and Image Understanding, 2013, 117(12): 1659-1671.
[16] 江泽涛, 翟丰硕, 钱艺, 等. 结合特征增强和多尺度感受野的低照度目标检测[J]. 计算机研究与发展, 2023, 60(4): 903-915.
JIANG Z T, ZHAI F S, QIAN Y, et al. Low Illumina-tion Object Detection Combined with Feature En-hancement and MultiScale Receptive Field[J], Journal of Computer Research and Development, 2023, 60(4): 903-915 (in Chinese).
[17] JIA X, ZHU C, LI M, et al. LLVIP: A Visible-infrared Paired Dataset for Low-light Vision[C]//2021 IEEE/CVF International Conference on Computer Vi-sion Workshops (ICCVW). 2021: 3489-3497.
[18] LOH Y P, CHAN C S. Getting to know low-light imag-es with the Exclusively Dark dataset[J]. Computer Vi-sion and Image Understanding, 2019, 178: 30-42.
[19] PENG D, DING W, ZHEN T. A novel low light object detection method based on the YOLOv5 fusion feature enhancement[J]. Scientific Reports, 2024, 14(1): 4486.
[20] LIU S, HE H, ZHANG Z, et al. LI-YOLO: An Ob-ject Detection Algorithm for UAV Aerial Images in Low-Illumination Scenes[J]. Drones, 2024, 8(11): 653.
[21] 江泽涛, 肖芸, 张少钦, 等. 基于Dark-YOLO的低照度目标检测方法[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 441-451.
JIANG Z T, XIAO Y, ZHANG S Q, et al. Low-Illumination Object Detection Method Based on Dark-YOLO [J], Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 441-451 (in Chinese).
[22] DU Z, SHIT M, DENG J. Boosting Object Detection with Zero-Shot Day-Night Domain Adapta-tion[C]//2024 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition (CVPR). 2024: 12666-12676.
[23] WANG W, WANG X, YANG W, et al. Unsupervised Face Detection in the Dark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 1250-1266.
[24] SASAGAWA Y, NAGAHARA H. YOLO in the Dark - Domain Adaptation Method for Merging Multiple Models[C]//VEDALDI A, BISCHOF H, BROX T, et al. Computer Vision – ECCV 2020. Cham: Springer In-ternational Publishing, 2020: 345-359.
[25] GUO C, LI C, GUO J, et al. Zero-Reference Deep Curve Estimation for Low-Light Image Enhance-ment[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 1777-1786.
[26] ZHANG L, LIU Z, ZHU X, et al. Weakly Aligned Feature Fusion for Multimodal Object Detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021: 1-15.
[27] LIU Y, JIANG W. Frequency Mining and Complemen-tary Fusion Network for RGB-Infrared Object Detec-tion[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5.
[28] RAZAKARIVONY S, JURIE F. Vehicle detection in aerial imagery?: A small target detection benchmark[J]. Journal of Visual Communication and Image Repre-sentation, 2016, 34: 187-203.
[29] ZHANG J, LEI J, XIE W, et al. SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15.
[30] JIN S, YU B, JING M, et al. DarkVisionNet: Low-Light Imaging via RGB-NIR Fusion with Deep Incon-sistency Prior[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 1104-1112.
[31] SHARMA M, DHANARAJ M, KARNAM S, et al. YOLOrs: Object Detection in Multimodal Remote Sensing Imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1497-1508.
[32] CHEN J, DING J, MA J. HitFusion: Infrared and Visi-ble Image Fusion for High-Level Vision Tasks Using Transformer[J]. IEEE Transactions on Multimedia, 2024, 26: 10145-10159.
[33] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 90-101.
LI J Y,LIU Q K,FU Y. Infrared smallobjectdetection based on attention mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 628959 (inChinese).
[34] ACHANTA R, SHAJI A, SMITH K, et al. SLIC Super-pixels Compared to State-of-the-Art Superpixel Meth-ods[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2012, 34(11): 2274-2282.
[35] HE K, ZHANG X, REN S, et al. Deep Residual Learn-ing for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778.
[36] HAN J, DING J, LI J, et al. Align Deep Features for Oriented Object Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
[37] YANG Z, LIU S, HU H, et al. RepPoints: Point Set Representation for Object Detection[C]//2019 IEEE/CVF International Conference on Computer Vi-sion (ICCV). 2019: 9656-9665.
[38] YANG X, YAN J, FENG Z, et al. R3Det: Refined Sin-gle-Stage Detector with Feature Refinement for Rotat-ing Object[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171.
[39] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[40] XIE X, CHENG G, WANG J, et al. Oriented R-CNN for Object Detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021: 3500-3509.
[41] JOCHER G, QIU J, CHAURASIA A. Ultralytics YOLO[CP]. (2023-01).