全差分频率调制半球谐振陀螺装配误差辨识及补偿方法

  • 王瑞祺 ,
  • 伊国兴 ,
  • 解伟男 ,
  • 魏振楠 ,
  • 董圣为
展开
  • 1. 哈尔滨工业大学
    2. 哈尔滨工业大学空间控制与惯性技术研究中心
    3. 哈尔滨工业大学航天学院
    4. 中国工程物理研究院

收稿日期: 2025-04-07

  修回日期: 2025-06-02

  网络出版日期: 2025-06-05

基金资助

国家自然科学基金;黑龙江省博士后面上项目

Identification and compensation method for assembly errors in fully differential frequency-modulated hemispherical resonator gyroscope

  • WANG Rui-Qi ,
  • YI Guo-Xing ,
  • JIE Wei-Nan ,
  • WEI Zhen-Nan ,
  • DONG Sheng-Wei
Expand

Received date: 2025-04-07

  Revised date: 2025-06-02

  Online published: 2025-06-05

摘要

针对全差分频率调制半球谐振陀螺因装配误差引起的性能退化,本文从信号处理的角度提出一种基于非线性优化的装配误差同步辨识及补偿方法。首先,建立了分时复用控制方案下装配姿态误差与通道耦合误差的系统性关联模型,分析了安装倾斜和安装偏心对通道耦合误差的影响机制。在此基础上,建立了包含通道耦合误差的半球谐振陀螺动态输出模型,揭示了载体转速与陀螺输出谐波分量的耦合效应。最后,提出一种基于非线性优化的装配误差同步辨识及补偿方法。实验结果表明,装配误差补偿后,陀螺的标度因数非线性和周向漂移稳定性分别降低了91.97%和51.25%,仅为0.694ppm和0.398°/h。该方法显著提升了陀螺在动态及静态环境下的性能指标,为高精度半球谐振陀螺的设计与优化提供了理论支撑。

本文引用格式

王瑞祺 , 伊国兴 , 解伟男 , 魏振楠 , 董圣为 . 全差分频率调制半球谐振陀螺装配误差辨识及补偿方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32079

Abstract

To address the performance degradation of fully differential frequency-modulated hemispherical resonator gyroscope (HRG) caused by assembly errors, this paper proposes a synchronous identification and compensation method for assembly errors based on nonlinear optimization from a signal processing perspective. First, a systematic correlation model between the as-sembly attitude errors and channel coupling errors under the time-division multiplexing control scheme is established, and the influence mechanisms of installation tilt and installation eccentricity on channel coupling errors are analyzed. On this basis, a dynamic output model of the HRG incorporating channel coupling errors is developed, revealing the coupling effect between the carrier rotation rate and the harmonic components of the gyroscope output. Finally, a synchronous identification and compensation method for assembly errors based on nonlinear optimization is proposed. Experimental results demon-strate that after compensating for assembly errors, the scale factor nonlinearity and circumferential drift stability of the gyro-scope are reduced by 91.97% and 51.25%, respectively, reaching only 0.694ppm and 0.398°/h. This method significantly enhances the gyroscope’s performance in both dynamic and static environments, providing theoretical support for the design and optimization of the high-precision HRG.
Options
文章导航

/