高超声速飞行器热结构面临着复杂的服役环境,在其结构设计过程中,采用考虑多场耦合的多学科精细化优化设计方法可以确保飞行器结构在各种复杂工况下具有卓越的性能和可靠性。针对传统多学科优化算法和传统可靠性优化算法效率低下、收敛困难的问题,本文提出了一种考虑非概率情况的飞行器结构多学科可靠性优化双层序贯高效算法,通过将多学科优化分解为一个主优化问题以及多个子优化问题,实现多学科优化约束间解耦,从而降低了多学科耦合分析在设计优化过程中产生的巨大计算成本,提高了优化效率。接着,对多学科优化最优设计点进行可靠性优化,采用双层嵌套的方式,将确定性优化与可靠性分析解耦,实现大幅提高可靠性优化效率。双层序贯算法将多学科优化扩展到了飞行器结构的可靠性优化问题,不仅实现了加速优化过程,还增强了设计的实用性和效果。最后以高超声速翼面结构优化为例,验证了本文针对高超声速飞行器结构多学科可靠性优化所提方法的正确性以及优化效率提升。
The structure of hypersonic aircraft operates in a complex service environment. During the structural design process, employing a multi-disciplinary fine optimization design method that considers multi-field coupling, which can ensure the superior performance and reliability of the aircraft structure under various complex operating conditions. Targeting the issues of low efficiency and convergence challenges associated with traditional multi-disciplinary optimization algorithms and reliability optimization algorithms, this paper proposes a double-layer sequential optimization algorithm designed specifically for multi-disciplinary reliability optimization of aircraft structures. By decomposing the multi-disciplinary optimization into a primary optimization problem and several subordinate optimization problems associated with individual constraints, the algorithm achieves decoupling of the constraints within the multi-disciplinary optimization framework. This approach not only enhances optimization efficiency but also significantly mitigates the substantial computational cost incurred by multi-disciplinary coupling analysis during the design optimization process. Subsequently, reliability optimization is performed on the multidisciplinary optimal design points. By employing a double-layer nesting method, deterministic optimization is decoupled from reliability analysis, thereby significantly enhancing the efficiency of reliability optimization. The two-layer sequential optimization algorithm extends multidisciplinary optimization to the realm of aircraft structural reliability optimization. This approach not only expedites the optimization process but also significantly enhances the practicality and efficacy of the design. Taking the optimization of hypersonic airfoil structures as a case study, the proposed method's validity is confirmed, thereby enhancing the efficiency of multidisciplinary reliability-based optimization design for aircraft structures.
[1]Budiansky B, Mayers J.Influence of aerodynamic heating on the effective torsional stiffness of thin wings[J].Journal of the Aeronautical Sciences, 1956, 23(12):1081-1093
[2]Vosteen L F, Fuller K E.Behavior of a cantilever plate under rapid-heating conditions[R]. USA: NASA, 1955.
[3]Heeg J, Zeiler T A, Pototzky A S, et al.Aerothermoelastic analysis of a NASP demonstrator model[C]. La Jolla, CA, USA, 1993.
[4]Mcnamara J, Friedmann P, Powell K, et al.Three-dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow[C]. Austin, Texas, USA, 2005.
[5]McNamara J.Aeroelastic and aerothermoelastic behavior of two and three dimensional lifting surfaces in hypersonic flow[M]. USA: University of Michigan, 2005.
[6]Langley D R, Thurston D E.A Versatile and Efficient Synthesis of Carbinolamine-Containing Pyrrolo[1,4]Benzodiazepines Via the Cyclization of N-(2- Aminobenzoyl)Pyrrolidine-2-Carboxaldehyde Diethyl Thioacetals - Total Synthesis of Prothracarcin[J].Cheminform, 1987, 18(28):91-97
[7]Kouba G, Botez R, Boely N.Identification of F/A-18 model from flight tests using the fuzzy logic method[C]. Orlando, Florida, USA, 2009.
[8]Scholten M F, Thornton A S, Mekel J M, et al.Anticoagulation in atrial fibrillation and flutter[J].Europace, 2005, 7(5):492-499
[9]Goura G, Badcock K J, Woodgate M A, et al.A data exchange method for fluid-structure interaction problems[J].Aeronautical Journal, 2001, 105(1046):215-221
[10]Mcnamara J J, Friedmann P P.Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past,Present,and Future[J].AIAA Journal, 2011, 49(6):1089-1122
[11]Agte J, Weck O L D, Sobieszczanskisobieski J, et al.MDO: Assessment and Direction for Advancement: an Opinion of One International Group[J].Structural and Multidisciplinary Optimization, 2010, 40:17-33
[12]Wit A D, Keulen F V.Numerical Comparison of Multi-Level Optimization Techniques[C]. Honolulu, Hawaii, USA, 2007.
[13]Mukherjee S, Lu D C, Raghavan B, et al.Accelerating Large-scale Topology Optimization: State-of-the-Art and Challenges[J].Archives of Computational Methods in Engineering, 2021, 28(7):4549-4571
[14]Xiao M Y, Lu D C, Breitkopf P, et al.On-the-fly model reduction for large-scale structural topology optimization using principal components analysis[J].Structural and Multidisciplinary Optimization, 2020, 61(1):209-230
[15]Xiao M Y, Lu D C, Breitkopf P, et al.Multi-grid reduced-order topology optimization[J].Structural and Multidisciplinary Optimization, 2020, 61(6):2319-2341
[16]Koch P N, Simpson T W, Allen J K, et al.Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size[J].Journal of Aircraft, 1999, 36(1):275-286
[17]Koch P N, Wujek B, Golovidov O.A MultiStage, Parallel Implementation of Probabilistic Design Optimization in an MDO Framework[C]. Long Beach, CA, USA, 2000.
[18]Lam X B, Kim Y S, Hoang A D, et al.Coupled Aerostructural Design Optimization Using the Kriging Model and Integrated Multiobjective Optimization Algorithm[J].Journal of Optimization Theory & Applications, 2009, 142(3):533-556
[19]Munk D J, Verstraete D, Vio G A.Effect of fluid-thermal-structural interactions on the topology optimization of a hypersonic transport aircraft wing[J].Journal of Fluids and Structures, 2017, 75:45-76
[20]曹鸿钧.基于凸集合模型的结构和多学科系统不确定性分析与设计[D]. 陕西: 西安电子科技大学, 2005.
[21]姚雯.不确定性MDO理论及其在卫星总体设计中的应用研究[D]. 湖南: 国防科学技术大学, 2007.
[22]Kennedy G, Kenway G, Martins J.Towards Gradient-Based Design Optimization of Flexible Transport Aircraft with Flutter Constraints[C]. Atlanta, GA, USA, 2014.
[23]Renaud J E, Gabriele G A.Improved coordination in nonhierarchic system optimization[J].AIAA Journal, 2013, 31(12):2367-2373
[24]Sellar R S, Batill S M, Renaud J E.Response Surface Based, Concurrent Subspace Optimization For Multidisciplinary System Design[C]. Reno, NV, USA, 1996.
[25]Wang Xiaojun, Xu Yusheng, Liu Peiyan, et al.A sequential algorithm for decoupling the multidisciplinary constraints of hypersonic vehicle structural optimization design in a thermal environment[J].Structural and Multidisciplinary Optimization, 2023, 66(8):185-
[26]Du X, Chen W.Sequential optimization and reliability assessment method for efficient probabilistic design[J].Journal of Mechanical Design, 2004, 126(2):225-233