In advanced aero-engines, a dual-rotor support scheme with an intermediate bearing is often employed to reduce the number of load-bearing frames and decrease the overall weight of the engine. However, the intermediate bearing-support structure system exhibits typical discontinuous characteristics and is influenced by the complex motion states of the dual rotors during operation, resulting in a harsh and variable load environment for the intermediate bearing-support structure system, which can easily lead to structural damage. This study focuses on the intermediate bearing-support structure system, analyzing the impact of changes in rotor motion states on the load environment of the bearing-support structure system, and proposes de-sign requirements for the bearing-support structure aimed at ensuring structural integrity. Research indicates that under dif-ferent rotor motion states, the interactive effects of bearing component motions subject the structural system to complex load excitations such as impact excitation, rotor harmonic excitation, combined frequency excitation of dual-rotor speeds, and rotor-cage speed modulation frequency excitation. These excitations cause the constraint characteristics of the support struc-ture to deviate from the design values until failure occurs. Therefore, it is necessary to consider the influence of different rotor motion states in the structural design and to verify and optimize the mechanical characteristics of the structure based on these considerations.
[1]PETER D.HYLTON.MINIMIZING Dynamic Re-sponse of Counter-Rotating Engines Through Opti-mized Node Placement[C]//Asme Turbo Expo: Power for Land, Sea, & Air.2010.DOI:10.1115/GT2010-22072.
[2]HARRIS T A.Essential Concepts of Bearing Technol-ogy[J].rolling bearing analysis, 2006, 200:-
[3]HARRIS T A, KOTZALAS M N.Advanced concepts of bearing technology: Rolling bearing analysis, fifth edition[J].Rolling Bearing Analysis, 2006.
[4]YANG Z, HONG J, WANG D, et al.Failure analysis of an aero-engine inter-shaft bearing due to cl-earance between the outer ring and its housing[J].
[5]Engineering Failure Analysis, 2023.DOI:10.1016/j.engfailanal.2023.107298.
[6]TAKABI J, KHONSARI M M .On the thermally-
[7]induced failure of rolling element bearings[J].Tribol-ogy International, 2016, 94:661-674.DOI:10.1016/j.triboint.2015.10.004.
[8]JACOBS W, HOOREWEDER B V, BOONEN R, et al.The influence of external dynamic loads on the lifetime of rolling element bearings: Experimental analysis of the lubricant film and surface wear[J].Mechanical Systems and Signal Processing, 2016.DOI:10.1016/j.ymssp.2015.04.033.
[9]郑德志, 王黎钦, 古乐, 等.航空发动机用高速滚动轴承性能考核及失效分析[J].润滑与密封, 2006, (07):51-53+57.
[10]ZHENG D Z, WANG L Q, GU L, et al.Monitoring and Failure Analysis of High Speed Rolling Bearing for Aeroengine [J].Lubrication Engineer-ing, 2006, (07):51-53+57 (in Chinese).
[11]郑金涛, 邓四二, 张文虎, 等.航空发动机主轴滚子轴承非典型失效机理[J].航空学报, 2020, 41(05):305-317
[12]ZHENG J T, DENG S E, ZHANG W H, et al.Atypical failure mechanism of aero-engine main shaft roller bearing[J].Acta Aeronautica et Astronautica Sini-ca, 2020, 41(05):305-317
[13]李锦标, 吴林丰.高速滚子轴承的动力学分析[J].航空学报, 1992, 13(12):625-632
[14]LI J B, WU L F.Dynamic analysis of high-speed roller bearings[J].Acta Aeronautica et Astronautica Sinica, 1992, 13(12):625-632
[15]LEBLANC A, NELIAS D, DEFAYE C.Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings[J].Journal of Sound & Vibration, 2009, 325(1-2):145-160
[16]WANG Y S, JIN N N, ZHU H F .Analysis on Dynamic Characteristics of High Speed Cylindrical Roller Bearing[J].Key Engineering Materials, 2011, 480-481:980-985.DOI:10.4028/www.scientific.net/KEM.480-481.980.
[17]GAO W, NELIAS D, LYU Y, et al.Numerical investigations on drag coefficient of circular cylinder with two free ends in roller bearings[J].Tribology I-nternational, 2018, 123:43-49.DOI:10.1016/j.triboint.2018.02.044.
[18]PATRA P, SARAN V H, HARSHA S P .Non-linear dynamic response analysis of cylindrical roller bearings due to rotational speed:[J].SAGE Publicati-onsSage UK: London, England, 2019(2).DOI:10.1177/1464419318762678.
[19]江齐, 姬贺炯, 朱剑寒, 等.基于有限元方法的航空发动机轴承座动强度设计方法研究[J].推进技术, 2023, 44(4):184-189
[20]JIANG Q, JI H J, ZHU J H, et al.Aeroengine Bearing Housing Dynamic Strength Design Method Based on Finite Element Method[J].Journal of Propulsion Technology, 2023, 44(4):184-189
[21]陈星.航空发动机轴承的可靠性分析及优化设计[D].成都:电子科技大学, 2023.
[22]CHEN X.Reliability Analysis and Optimisation De-sign of Aero-engine Bearing [D]. Chengdu: Universi-ty of Electronic Science and Technology of Chi-na, 2023 (in Chinese).
[23]刘棣, 李超, 马艳红, 等.柔性转子动力学特性及支承结构安全性设计[J].航空发动机, 2021.DOI:10.13477/j.cnki.aeroengine.2021.02.008.
[24]LIU D, LI C, MA Y H, et al.Aeroengine Flexibili-ty Rotor Dynamics and Support Structure Safety D-esign [J]. Aeroengine, 2021.DOI:10.13477/j.cnki.aeroengine.2021.02.008 (in Chinese).
[25]中国人民解放军总装备部.军用装备实验室环境试验方法第18部分:冲击试验 GJB150.18a-2009[S]. 2009.
[26]General Armament Department of the Chinese Peo-ple' s Liberation Army.Military Equipment Laboratory Environmental Test Methods Part 18: Shock Test GJB150.18a-2009[S]. 2009 (in Chinese).
[27]倪振华.振动力学[M]. 西安:西安交通大学出版社, 1989.
[28]NI Z H.Vibration dynamics[M]. Xi' an: Xi' an Jiaotong University Press, 1989 (in Chinese).
[29]王东, 韩卓荦, 杨哲夫, 等.连接结构刚度非对称对高速转子动力特性影响[J].航空动力学报, 2024, 39(12):140-150
[30]WANG D, HAN Z L, YANG Z F, et al.Influence of unsymmetrical stiffness of joints on high-speed rotor dynamic characteristics[J].Journal of Aerospace Power, 2024, 39(12):140-
[31]洪杰, 徐筱李, 梁天宇, 等.转子结构系统界面失效分析及稳健设计方法[J].航空动力学报, 2018, 33(03):649-656
[32]HONG J, XU X L, LIANG T Y, et al.Interface fail-ure analysis and robust design method in rotor str-uctural system[J].Journal of Aerospace Power, 2018, 33(03):649-656
[33]洪杰, 徐翕如, 苏志敏, 等.高速转子连接结构刚度损失及振动特性[J].北京航空航天大学学报, 2019, 45(01):
[34]-25.DOI:10.13700/j.bh.1001-5965.2018.0222.
[35]HONG J, XU X R, SU Z M, et al.Joint stiffness
[36]loss and vibration characteristics of high-speed roto-r.[J] Journal of Beijing University of Aeronautics a-nd Astronautics, 2019, 45 (1): 18-25 (in Chinese).
[37]马艳红, 倪耀宇, 陈雪骑, 等.长拉杆-止口连接弯曲刚度损失及对转子系统振动响应影响[J].航空学报, 2021, 42(03):303-313
[38]MA Y H, NI Y Y, CHEN X Q, et al.Bending stiffness loss of rodrabbit - joints and its effect on vibration re-sponse of rotor systems[J].Acta Aeronautica et As-tronautica Sinica, 2021, 42(03):303-313
[39]顾家柳.转子动力学[M]. 北京: 国防工业出版社, 1985.
[40]GU J L.Rotordynamics [M]. Beijing: National De-fense Industry Press, 1985 (in Chinese).
[41]洪杰, 王华, 肖大为, 等.转子支承动刚度对转子动力特性的影响分析[J].航空发动机, 2008, 34(1):5-
[42]HONG J, WANG H, XIAO D W, et al.Effects of Dynamic Stiffness of Rotor Bearing on Rotordyna-mic Characteristics[J].Aeroengine, 2008, 34(1):5-