随着航空航天装备的生产模式向智能化转变,大型筒段类部件装配正加速向数字化系统转型,并朝装配(对接)数字孪生系统迈进,但其中的测量、传动等环节均会对筒段调姿定位精度产生影响。在自动化装配过程中,传统的定位精度优化方法难以补偿多系统协同作业的全局累积误差,对于筒段的实时定位精度也缺乏有效的监测和在线优化方法,导致筒段的最终对接质量和效率无法保证。为解决该问题,提出一种面向筒段对接数字孪生的定位精度在线优化方法。首先建立了数字孪生系统框架,并给出了筒段装配闭环控制流程;然后研究了多系统协同作业的定位精度优化方法,重点分析了多系统的误差因素对定位精度的影响,通过建模与分析,研究了基于迭代奇异值分解法(Singular Value Decomposition, SVD)的测量位姿求解精度优化方法、机理数据融合驱动的调姿定位误差在线预测方法和基于几何解析和跨系变换的驱动器参数精准求解方法。通过引入在线精度优化算法和预测误差补偿机制,有效解决了筒段的定位误差累积问题,提升了对接动态精度控制能力。使用开发的原型系统进行实例验证,结果表明该方法将筒段定位精度平均提高了70.77%,对接周期时间缩短了53.10%,可有效提升筒段的对接精度和效率,验证了所提方法的正确性和有效性。
As the production mode of aerospace equipment changes to intelligence, the aligning of cylindrical components increasingly adopts digital assembly systems. However, measurement and transmission processes introduce deviations in pose adjustment and positioning accuracy. Notably, in the process of automatic aligning, conventional optimization methods fail to compen-sate for globally accumulated errors in multi-system collaboration, while the absence of real-time monitoring and online op-timization further undermines aligning quality and efficiency. To address this challenge, a digital twin-driven online position-ing accuracy optimization method is proposed for cylindrical components aligning. In this study, a digital twin system framework for cylindrical components aligning is first established, incorporating a closed-loop control methodology. Subse-quently, the method systematically investigates error factors in multi-system coordination, including modeling and analysis of their impacts on positioning accuracy. Key innovations involve an iterative Singular Value Decomposition-based measure-ment pose optimization algorithm, a mechanism-data fusion-driven online prediction model for alignment errors, and a geo-metric-analytical cross-system transformation method for precise actuator parameter calculation. By integrating online preci-sion refinement algorithms and predictive error compensation mechanisms, the cumulative positioning errors are effectively mitigated, enhancing dynamic aligning accuracy control capabilities. Experimental validation using a prototype system demonstrates that the method can effectively improve the aligning accuracy by 70.77% and efficiency of the cylindrical components by 53.10%, and verifies the correctness and effectiveness of the proposed method.
[1]Xiong M, Wang H.Digital twin applications in avia-tion industry: A review[J].The International Journal of Advanced Manufacturing Technology, 2022, 121(9):5677-5692
[2]Fan W, Xiao R, Zhang J, et al.A Digital Twin System for Adaptive Aligning of Large Cylindrical Compo-nents[J].Applied Sciences, 2024, 14(18):8307-8307
[3]易旺民, 段碧文, 高峰, 等.大型舱段装配中的水平对接技术[J].计算机集成制造系统, 2015, 21(09):2354-2360
[4]Deng Z, Li S, Qi Z, et al.A coaxial alignment method for large aircraft component assembly using distrib-uted monocular vision[J].Assembly Automation, 2018, 38(4):437-449
[5]袁立.现代飞机数字化柔性装配生产线[J]. 航空科学技术, 2011(5): 4.
[6]赵欢, 葛东升, 罗来臻, 等.大型构件自动化柔性对接装配技术综述[J].机械工程学报, 2023, 59(14):277-297
[7]范玉青.波音787飞机总装配线及其特点[J]. 航空制造技术, 2011(Z2): 38-42.
[8]Lockheed Martin F-35 joint strike fighter automated electronic mate and assembly system.
[9]沈晓成.导弹舱段部件精密柔性装配系统研究[D]. 哈尔滨工业大学, 2017.
[10]马剑锋.导弹数字化柔性对接系统设计及试验研究[D]. 哈尔滨工业大学, 2014.
[11]刘哲, 徐志刚, 尹猛, 等.导弹总装自动对接装配机构的设计与研究[J]. 组合机床与自动化加工技术, 2018, (06): 151-155.
[12]齐乃明, 张轶, 贺龙, 等.基于气悬浮技术的重型部件自动化柔顺对接装配技术分析[J].机械, 2019, 46(04):1-8
[13]Fan Y, Luo J, Tomizuka M.A learning framework for high precision industrial assembly[C]//2019 Interna-tional Conference on Robotics and Automation (ICRA). IEEE, 2019: 811-817.
[14]Li H, Qiu L, Wang Z, et al.A prediction method of mechanical product assembly precision based on the fusion of measured samples and assembly feature fi-delity samples[J]. The International Journal of Ad-vanced Manufacturing Technology, 2020, 111: 2877-2890.
[15]李文龙, 谢核, 尹周平, 等.机器人加工几何误差建模研究:Ⅰ空间运动链与误差传递[J].机械工程学报, 2021, 57(07):154-168
[16]赵永胜, 赵志勇, 李迎, 等.基于数字孪生的机身对接精度优化控制方法[J].浙江大学学报工学版, 2023, 57(05):883-891
[17]Zhou C, Yu C, Liu H, et al.Pose Error Compensation for the Actuator of an Automatic Docking Connect-or[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1345(3): 032028.
[18]Lu Y, Liu C, Kevin I, et al.Digital Twin-driven smart manufacturing: Connotation, reference model, appli-cations and research issues[J]. Robotics and comput-er-integrated manufacturing, 2020, 61: 101837.
[19]Tao F, Cheng J, Qi Q, et al.Digital twin driven prod-uct design, manufacturing and service with big da-ta[J]. The International Journal of Advanced Manu-facturing Technology, 2018 (94):3563-3576.
[20]Tao F, Qi Q.Make more digital twins[J].Nature, 2019, 573(7775):490-491
[21]郭飞燕, 刘检华, 邹方, 等.数字孪生驱动的装配工艺设计现状及关键实现技术研究[J].机械工程学报, 2019, 55(17):110-132
[22]Yi Y, Yan Y, Liu X, et al.Digital twin-based smart assembly process design and application framework for complex products and its case study[J]. Journal of Manufacturing Systems, 2021, 58: 94-107.
[23]Jia K, Wang H, Ren D, et al.A general mathematic model framework for assembly process driven digital twin of assembly precision[J]. Journal of Manufactur-ing Systems, 2024, 77: 196-211.
[24]张入元, 武殿梁, 黄顺舟.基于数字孪生的总装对接在线监控技术 [J]. 组合机床与自动化加工技术, 2021, (11): 109-113.
[25]Shi L, Yan L, Shuqing B, et al.Research on intelligent assembly modes of aerospace products based on digital twin[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 1756(1): 012011.
[26]陶飞, 马昕, 戚庆林, 等.数字孪生连接交互理论与关键技术[J].计算机集成制造系统, 2023, 29(01):1-10