基于声爆高效预测的超声速民机优化设计与数据挖掘

  • 李祚泰 ,
  • 陈树生 ,
  • 金世轶 ,
  • 高正红 ,
  • 李军府 ,
  • 周卫国 ,
  • 艾俊强
展开
  • 1. 西北工业大学
    2. 中航工业第一飞机设计研究院
    3. 中国一航第一飞机设计研究院

收稿日期: 2025-03-03

  修回日期: 2025-05-24

  网络出版日期: 2025-05-27

Optimization design and data mining for supersonic transport based on sonic boom efficient prediction method

  • LI Zuo-Tai ,
  • CHEN Shu-Sheng ,
  • JIN Shi-Yi ,
  • GAO Zheng-Hong ,
  • LI Jun-Fu ,
  • ZHOU Wei-Guo ,
  • AI Jun-Qiang
Expand

Received date: 2025-03-03

  Revised date: 2025-05-24

  Online published: 2025-05-27

摘要

绿色超声速民机是未来民用飞行器的重要发展方向,而声爆仍是制约其发展的关键因素之一。传统CFD方法计算量大、耗时长,难以直接用于初期迭代设计。但基于面积律的声爆高效预测方法能够在保证一定精度的前提下大幅缩短计算时间,契合了超声速民机初期设计阶段大量、快速计算的需求。因此,本文基于声爆面积律高效预测方法,建立了一套超声速民机低声爆优化设计框架。以LM1021无短舱构型为初始构型验证了多声爆传播角下优化设计的有效性,优化结果均经过高精度CFD验证:0°传播角优化下的远场最大过压值降低32.03%;0°和30°传播角协同优化下的远场最大过压值分别降低30.45%、32.66%。借助声爆高效预测方法快速生成超声速民机声爆数据集,采用随机森林和自适应增强算法进行智能数据挖掘,提取超声速民机低声爆关键设计变量。经对比验证,数据挖掘结果与CFD流场特征、面积律理论相吻合,结果表明合理设计机鼻静音锥、翼根翼型及上反角、机尾外形是超声速民机低声爆设计的关键。基于高效预测方法开展的声爆优化设计和数据挖掘,表现出显著的效率优势,能够为后续的超声速民机设计工作提供技术支撑。

本文引用格式

李祚泰 , 陈树生 , 金世轶 , 高正红 , 李军府 , 周卫国 , 艾俊强 . 基于声爆高效预测的超声速民机优化设计与数据挖掘[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31920

Abstract

Green supersonic transport (SST) is one trend of civil aircraft in the future. Sonic boom is an important factor affecting on its development. Traditional CFD method isn’t suitable for massive and iterative designs, due to large computation quantity and time-consumption. However, sonic boom efficient prediction method based on area rule can significantly reduce computation time with a certain level of accuracy. It satisfies the requirement of a large number of rapid calculations in the initial design phase of SST. Therefore, the paper establishes a framework for low sonic boom optimization design of SST, based on the efficient prediction method. LM1021 no-nacelle configuration is optimized to verify the optimization in multiple propagation angles. The optimization results are validated by high-accuracy CFD method: The maximum overpressure in the far field is reduced by 32.03% considering the propagation angle of 0°, while the maximum overpressures are decreased by 30.45% and 32.66% respectively when it takes the angles of 0° and 30° into account. Sonic boom dataset of SST is generated with the help of efficient prediction method. Random forest and AdaBoost algorithms are applied for intelligent data mining to extract the key design variables of low sonic boom. The results of data mining are consistent with CFD flow fields and area rule. The designs of the Quiet Spike, the airfoil and dihedral angle of wing root and the tail shape are of importance for sonic boom mitigation. Sonic boom optimization design and data mining based on efficient prediction method can provide support for SST design, with the advantage of high efficiency.

参考文献

[1]CANDEL S.Concorde and the future of supersonic transport[J].Journal of Propulsion and Power, 2004, 20(1):59-68
[2]朱自强,兰世隆.超声速民机和降低音爆研究[J].航空学报, 2015, 36(08):2507-2528
[3]丁玉临,韩忠华,乔建领,等.超声速民机总体气动布局设计关键技术研究进展[J].航空学报, 2023, 44(02):20-46
[4]韩忠华,乔建领,丁玉临,等.新一代环保型超声速客机气动相关关键技术与研究进展[J].空气动力学学报, 2019, 37(04):620-635
[5]RICHWINE D, BRANDON J.Quiet SuperSonic Technology (QueSST) Aircraft Preliminary Design Status and Low-Boom Flight Demonstration (LBFD) Project Update: NF1676L-28931[R]. Reston, VA: AIAA, 2018.
[6]兰世隆.超声速民机声爆理论, 预测和最小化方法概述[J].空气动力学学报, 2019, 37(4):646-654
[7]WHITHAM G B.The flow pattern of a supersonic projectile[J].Communications On Pure and Applied Mathematics, 1952, 5(3):301-348
[8]THOMAS C L.Extrapolation of sonic boom pressure signatures by the waveform parameter method: NASA-TN-D-6832[R]. Moffett Field, Calif: NASA Ames Research Center, 1972.
[9]王刚,马博平,雷知锦,等.典型标模音爆的数值预测与分析[J].航空学报, 2018, 39(1):121458-
[10]ISHIKAWA H, TANAKA K, MAKINO Y, et al.Sonic-boom prediction using Euler CFD codes with structured/unstructured overset method[C]// 27th Congress of International Council of the Aeronautical Sciences. Nice, France: 2010: 2010-2012.
[11]黄江涛,张绎典,高正红,等.基于流场声爆耦合伴随方程的超声速公务机声爆优化[J].航空学报, 2019, 40(05):51-61
[12]单程军,贡天宇,易理哲,等.超声速民机高效高可信度声爆气动多学科优化方法[J].航空学报, 2024, 45(24):51-68
[13]WALKDEN F.The shock pattern of a wing-body combination,far from the flight path[J].Aeronautical Quarterly, 1958, 9(2):164-194
[14]LIGHTHILL M J.Supersonic flow past slender bodies of revolution the slope of whose meridian section is discontinuous[J].The Quarterly Journal of Mechanics and Applied Mathematics, 1948, 1(1):90-102
[15]BLACKSTOCK D T.Thermoviscous attenuation of plane,periodic,finite‐amplitude sound waves[J].The Journal of the Acoustical Society of America, 1964, 36(3):534-542
[16]CARLTON T W, BLACKSTOCK D T.Propagation of plane sound waves of finite amplitude in inhomogeneous fluids[J].The Journal of the Acoustical Society of America, 1974, 56(S1):S42-
[17]PIERCE A D.Acoustics: an introduction to its physical principles and applications[M]Springer, 2019.
[18]CLEVELAND R O.Propagation of sonic booms through a real, stratified atmosphere[M]. Austin: The University of Texas, 1995.
[19]张绎典,黄江涛,高正红.基于增广Burgers方程的音爆远场计算及应用[J].航空学报, 2018, 39(07):101-112
[20]顾奕然,黄江涛,陈树生,等.基于逆向增广Burgers方程的声爆反演技术[J].航空学报, 2023, 44(02):84-97
[21]CHEN S S, QIU J Y, YANG H, et al.Deep learning for inverse design of low-boom supersonic configurations[J].Advances in Aerodynamics, 2023, 5(1):13-
[22]PARK M A, MORGENSTERN J M.Summary and statistical analysis of the first AIAA sonic boom prediction workshop[J].Journal of Aircraft, 2016, 53(2):578-598
[23]MELISSA C.Lockheed Martin 1021 Full Configuration (2014 optional)[EB/OL]. (2018-12-21)[2024-10-28]. https://lbpw.larc.nasa.gov/sbpw1/test-cases/lm-1021/.
[24]BUONANNO M, CHAI S, MARCONI F, et al.Overview of sonic boom reduction efforts on the Lockheed Martin N+ 2 supersonic validations program[C]// 32nd AIAA Applied Aerodynamics Conference. Atlanta, GA: 2014: 2138.
[25]PARK M A, CAMPBELL R L, ELMILIGUI A A, et al.Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction[C]// 52nd Aerospace Sciences Meeting. National Harbor, MD: 2014: 115.
[26]PLOTKIN K, MAGLIERI D.Sonic boom research: History and future[C]// 33rd AIAA Fluid Dynamics Conference and Exhibit. Orlando, FL: 2003: 3575.
[27]SEDERBERG T W, PARRY S R.Free-form deformation of solid geometric models[C]// Proceedings of the 13th annual conference on Computer graphics and interactive techniques. 1986: 151-160.
[28]LEE C, KOO D, ZINGG D W.Comparison of B-spline surface and free-form deformation geometry control for aerodynamic optimization[J].AIAA Journal, 2017, 55(1):228-240
[29]KENNEDY J, EBERHART R.Particle swarm optimization[C]// Proceedings of ICNN' 95-international conference on neural networks. Perth, WA, Australia: ieee, 1995: 1942-1948.
[30]MIRJALILI S, SONG DONG J, LEWIS A, et al.Particle Swarm Optimization: Theory, Literature Review, and Application in Airfoil Design[M]. Cham: Springer International Publishing, 2020: 167-184.
[31]张力文,宋文萍,韩忠华,等.声爆产生、传播和抑制机理研究进展[J].航空学报, 2022, 43(12):77-100
[32]BAN N, YAMAZAKI W, KUSUNOSE K.Low-boomlow-drag design optimization of innovative supersonic transport configuration[J].Journal of Aircraft, 2018, 55(3):1071-1081
[33]PLOTKIN K, SIZOV N, MORGENSTERN J.Examination of sonic boom minimization experienced indoors[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NEV: 2008: 57.
[34]JEONG S, CHIBA K, OBAYASHI S.Data mining for aerodynamic design space[J].Journal of Aerospace Computing, Information, and Communication, 2005, 2(11):452-469
[35]NUNEZ M, GUENOV M D.Design-exploration framework for handling changes affecting conceptual design[J].Journal of Aircraft, 2013, 50(1):114-129
[36]张伟伟,寇家庆,刘溢浪.智能赋能流体力学展望[J].航空学报, 2021, 42(4):524689-
[37]金世轶,陈树生,杨华,等.基于数据挖掘的翼型气动隐身多学科分析[J/OL]. 航空动力学报, (2024-10-12)[2024-11-19].https://doi.org/10.13224/j.cnki.jasp.20230435.
[38]BIAU G, SCORNET E.A random forest guided tour[J].Test, 2016, 25:197-227
[39]SCORNET E.On the asymptotics of random forests[J].Journal of Multivariate Analysis, 2016, 146:72-83
[40]ALTMAN N, KRZYWINSKI M.Ensemble methods: bagging and random forests[J].Nature Methods, 2017, 14(10):933-935
文章导航

/