一种联合时频差与差分多普勒变化率的运动辐射源定位新方法

  • 王鼎 ,
  • 尹洁昕 ,
  • 高路 ,
  • 张莉
展开
  • 1. 信息工程大学信息系统工程学院
    2. 战略支援部队信息工程大学
    3. 北京航天长征飞行器研究所
    4. 中国人民解放军战略支援部队信息工程大学信息系统工程学院

收稿日期: 2025-02-14

  修回日期: 2025-05-21

  网络出版日期: 2025-05-27

基金资助

国家自然科学基金;国家自然科学基金;军委科技委高层次科技创新人才自主科研项目

A novel method for locating moving emitter by combining time-difference-of-arrival, frequency-difference-of-arrival, and differential Doppler rate measurements

  • WANG Ding ,
  • YIN Jie-Xin ,
  • GAO Lu ,
  • ZHANG Li
Expand

Received date: 2025-02-14

  Revised date: 2025-05-21

  Online published: 2025-05-27

摘要

针对运动辐射源进行高精度定位对于目标态势感知至关重要,除了时频差观测量以外,差分多普勒变化率也可用于提升对运动辐射源的定位性能。本文提出一种联合时频差与差分多普勒变化率观测量的运动辐射源定位新方法,该方法将加权多维标度分析原理与正交投影变换相结合,无需迭代运算,可有效提高大观测误差存在条件下和观测平台状态参数受到随机扰动条件下的定位精度。所提方法包含3个计算阶段:阶段1利用时频差与差分多普勒变化率观测量构造3个标量积矩阵与3个伪逆矩阵,并进而形成定位观测方程;阶段2利用正交投影变换消除阶段1定位观测方程中非线性辅助变量的影响,由此获得定位问题的中间闭式解;阶段3利用此中间闭式解抵消辅助变量,补偿正交投影变换所带来的信息损失,与此同时再次利用全部观测信息以获得最终定位结果。此外,该文还基于Kronecker积与正交投影矩阵的数学性质证明新方法的渐近统计最优性。仿真实验结果验证所提方法相比其他相关定位方法的优越性。

本文引用格式

王鼎 , 尹洁昕 , 高路 , 张莉 . 一种联合时频差与差分多普勒变化率的运动辐射源定位新方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31873

Abstract

High-precision localization of moving emitters is crucial for target situation awareness. In addition to conventional time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements, differential Doppler rate (DDR) measurements can also be employed to enhance the positioning performance of moving emitters. In this paper, a novel non-iterative method combining TDOA, FDOA and DDR measurements is proposed to locate a moving emitter. This method integrates the principles of weighted multidimensional scaling analysis with orthogonal projection transformation. When the measurement error is large, and the observation platform’s state parameters are subject to random perturbations, the positioning accuracy can be effectively improved. The proposed method consists of three calculation stages, namely Stage 1, Stage 2, and Stage 3. Specifically, Stage 1 constructs three scalar product matrices and corresponding pseudo-inverse matrices from TDOA, FDOA, and DDR measurements to establish the positioning observation equation. Stage 2 employs orthogonal projection transformation to eliminate the influence of nonlinear auxiliary variables in the positioning observation equation in Stage 1, generating an intermediate closed-form solution for the positioning result. Stage 3 uses this intermediate closed-form solution to eliminate auxiliary variables and compensate for the information loss induced by the orthogonal projection transformation, and at the same time, uses all measurement information again to produce the final positioning result. Furthermore, based on the properties of the Kronecker product and the orthogonal projection matrix, the asymptotic efficiency of this new estimator is demonstrated through mathematical analysis. Simulation results validate the superiority of the proposed method over other related positioning methods.

参考文献

[1] Zhang T Y, Teng P X, Lyu J, Yang J. Quasi-closed-form algorithms for spherical angle-of-arrival source localization[J]. IEEE Transactions on Signal Processing, 2024, 72: 432-448.
[2] Feng Y, Fritsche C, Gustafsson F, Zoubir A M. TOA-based robust wireless geolocation and Cramér-rao lower bound analysis in harsh LOS/NLOS environments[J]. IEEE Transactions on Signal Processing, 2013, 61(9): 2243-2255.
[3] Sun Y M, Ho K C, Xing T Y, Yang Y B, Chen L Y. Projection-based algorithm and performance analysis for TDOA localization in MPR[J]. IEEE Transactions on Signal Processing, 2024, 72: 896-911.
[4] Ketabalian H, Biguesh M, Sheikhi A. Advanced RSS-based multisource localization: Sequential hypothesis testing for robust location estimation[J]. IEEE Sensors Journal, 2024, 24(22): 37324-37331.
[5] 李金洲, 郭福成. 传感器位置误差条件下仅用到达频率差的无源定位性能分析[J]. 航空学报, 2011, 32(8): 1497-1505.
[6] Pei Y H, Li X, Yang L, Guo F C. A closed-form solution for source localization using FDOA measurements only[J]. IEEE Communications Letters, 2023, 27(1): 115-119.
[7] Pei Y H, Li X, Guo F C, Zhang M. Moving source localization using frequency difference of arrival measurements only[J]. IEEE Transactions on Vehicular Technology[J]. 2025, 74(1): 1052-1063.
[8] Ulman R, Geraniotis E. Wideband TDOA/FDOA processing using summation of short-time CAF's[J]. IEEE Transactions on Signal Processing, 1999, 47(12): 3193-3200.
[9] Wu H, Su W M, Gu H. A novel Taylor series method for source and receiver localization using TDOA and FDOA measurements with uncertain receiver positions[A]. Proceedings of the IEEE International Conference on Radar[C]. Chengdu, China: IEEE Press, October 2011: 1037-1044.
[10] Liu C F, Yun J W. Joint TDOA/FDOA localization algorithm using Bi-iterative method with optimal step length[J]. Chinese Journal of Electronics, 2021, 30(1): 119-126.
[11] Yu H G, Huang G M, Gao J, Liu B. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 44-47.
[12] Qu X M, Xie L H, Tan W R. Iterative constrained weighted least squares source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2017, 65(15): 3990-4003.
[13] Liu Z X, Zhao Y J, Hu D X, Liu C C. A moving source localization method for distributed passive sensor using TDOA and FDOA measurements[J]. International Journal of Antennas and Propagation, 2016, 2016: 8625039.
[14] Wang G, Li Y M, Ansari N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853-862.
[15] Wang Y L, Wu Y. An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements[J]. IEEE Communications Letters, 2017, 21(1): 80-83.
[16] Wang Y L, Wu Y, Wang D, Shen Y. TDOA and FDOA based source localisation via importance sampling[J]. IET Signal Processing, 2018, 12(7): 917-929.
[17] 国强, 朱国会, 李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报(工学版), 2023, 53(2): 593-600.
[18] 蒋伊琳, 刘梦楠, 郜丽鹏, 陈涛. 运动多站无源时差/频差联合定位方法[J]. 系统工程与电子技术, 2019, 41(7): 1441-1449.
[19] 国强, 李文韬. 一种4站情况下基于TDOA/FDOA的无源定位方法[J]. 航空学报, 2021, 42(2): 324236.
[20] Ho K C, Xu W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463.
[21] Noroozi A, Oveis A H, Hosseini S M, Sebt M A. Improved algebraic solution for source localization from TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2018, 7(3): 352-355.
[22] 孙霆, 董春曦. 传感器参数误差下的运动目标TDOA/FDOA无源定位算法[J]. 航空学报, 2020, 41(2): 323317.
[23] Song H B, Wen G J, Zhu L X, Li D D. A novel TSWLS method for moving target localization in distributed MIMO radar systems[J]. IEEE Communications Letters, 2019, 23(12): 2210-2214.
[24] Mao Z, Su H T, He B, Jing X C. Moving source localization in passive sensor network with location uncertainty[J]. IEEE Signal Processing Letters, 2021, 28: 823-827.
[25] Meng T C, Zhang Z K, Lin Y H. Joint localization algorithm of TDOA and FDOA considering the position error of underwater sensors[J]. IET Radar, Sonar & Navigation, 2022, 16: 1434-1445.
[26] Gong W S, Song X, Zhu C Y, Wang Q, Li Y C. Closed-form method for unified far-field and near-field localization based on TDOA and FDOA measurements[J]. Remote Sensing, 2024, 16: 3047.
[27] Bagherian G, Mokari N, Arand B A, Ho K C, Yanikomeroglu H. A closed-form method with low noise sensitivity for locating a moving source on earth at a known altitude[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 7870-7885.
[28] Wei H W, Peng R, Wan Q, Chen Z X, Ye S F. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1677-1688.
[29] 王鼎, 尹洁昕, 张欣光, 郑娜娥. 一种基于加权多维标度分析的多个非相关源TDOA/FDOA协同定位方法[J]. 航空学报, 2023, 44(7): 327105.
[30] Hu D X, Huang Z, Zhang S Y, Lu J H. Joint TDOA, FDOA and differential Doppler rate estimation: Method and its performance analysis[J]. Chinese Journal of Aeronautics, 2018, 31(1): 137-147.
[31] Ding T, Zhao Y S, Zhao Y J. An efficient algebraic solution for moving source localization from quadruple hybrid measurements[J]. Chinese Journal of Electronics, 2022, 31(2), 255-265.
[32] Liu Y, Long H, Fan G, Wang X, Zhang Y. A co-localization algorithm for underwater moving targets with an unknown constant signal propagation speed and platform errors[J]. Sensors, 2024, 24: 3127.
[33] Pei Y H, Zhang M, Guo F C, Liu Q. Semidefinite programming approach for source localization using TDOA, FDOA and AOA measurements[A]. Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing[C]. Xian, China: IEEE Press, August 2021: 1-5.
[34] Hu D X, Huang Z, Chen X, Lu J H. A moving source localization method using TDOA, FDOA and Doppler rate measurements[J]. IEICE Transactions on Communications, 2016, 99-B(3): 758-766.
[35] Wang H, Li L P. An effective localization algorithm for moving sources[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021: 32.
[36] Liu Z X, Hu D X, Zhao Y S, Zhao Y J. An algebraic method for moving source localization using TDOA, FDOA, and differential Doppler rate measurements with receiver location errors[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019: 25.
[37] Ma F H, Liu Z M, Yang L, Guo F C. Altitude constrained source localization using TDOA, FDOA and differential Doppler rate[J]. Digital Signal Processing, 2022, 123: 103385.
[38] 张贤达. 矩阵分析与应用(第2版)[M]. 北京: 清华大学出版社, 2013.
[39] Viberg M, Ottersten B. Sensor array processing based on subspace fitting[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1110-1121.
文章导航

/