基于格林函数的热障涂层结构热力耦合场分析

  • 李秋华
展开
  • 中国人民解放军国防科技大学

收稿日期: 2025-01-03

  修回日期: 2025-05-25

  网络出版日期: 2025-05-27

基金资助

中国博士后科学基金;国家自然科学基金;湖南省自然科学面上基金

Thermal coupling field analysis of thermal barrier coating structure based on Green’s function

  • LI Qiu-Hua
Expand
  • 中国人民解放军国防科技大学

Received date: 2025-01-03

  Revised date: 2025-05-25

  Online published: 2025-05-27

摘要

热障涂层是保障高性能航空发动机涡轮叶片、火箭发动机推力室壁等高端装备在极端高温环境服役的核心技术之一。由于热障涂层界面场的复杂性和不连续性,其结构热力耦合场的精细表征是目前热障涂层性能评估的核心挑战。针对传统数值方法在界面非连续场分析中存在收敛性差、效率低等瓶颈问题,本文创新性地提出一种基于格林函数理论的热障涂层结构热力耦合场的精细解析计算方法。基于材料通解,构造含待定常数的简洁调和函数,将其代入通解,由边界条件、界面连续条件和热力平衡条件确定待定常数,获得了具有严格数学表征的普适性热涂层结构热弹性全场解析解。基于全场解析解,设计详细的数值试验,探讨了该方法的有效性和高效性,并系统地开展了涂层厚度、热膨胀失配效应等参数敏感性分析,揭示了涂层厚度和热参数失配对界面应力场的影响规律。本研究为热障涂层结构的精细设计和界面失效机理研究提供了新的理论方法。

本文引用格式

李秋华 . 基于格林函数的热障涂层结构热力耦合场分析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31764

Abstract

Thermal barrier coatings (TBCs) are one of the core technologies that ensure the service of high-performance aero-engine turbine blades, rocket engines thrust chamber walls, and other advanced equipment in extreme high-temperature environments. However, accurately calculating the structural thermo-mechanical coupled field re-mains challenging due to the interface complexity and discontinuity in TBCs. Aiming at the bottleneck prob-lems such as poor convergence and low efficiency existing in the analysis of interface discontinuous fields by traditional numerical methods, this paper proposes a refined calculation method for the thermo-mechanical cou-pled field of TBC structures using the Green's function. Based on the general solution of the material, a concise harmonic function containing undetermined constants is constructed and substituted into the general solution. The undetermined constants are determined by boundary conditions, interface conditions, and thermo-mechanical equilibrium conditions. This yields a comprehensive analytical solution for the thermo-elasticity of TBC structures. Based on the solution, the sensitivity analyses of parameters such as coating thickness and thermal expansion mismatch effect were systematically carried out, revealing the influence laws of coating thickness and thermal parameter mismatch on the interfacial stress field. This provides a theoretical foundation for the precise design of TBC structures and the study of interface failure mechanisms.

参考文献

[1]Padture NP.Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science, 2002, 296(5566):280-4
[2]王者, 王志平, 丁坤英, 张涛王远航.某型航空发动机涡轮导向叶片热障涂层可靠性分析[J].航空学报, 2024, 45(22):1-15
[3]Wang, Z, Ding, K.Y.,Zhang,T,& Wang,YH. Re-liability analysis of thermal barrier coatings on tur-bine guide vanes for a certain type of aero-engine[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(22):1-15
[4]徐惠彬, 宫声凯刘福顺.航空发动机热障涂层材料体系的研究[J].航 空 学 报., 2000, 21(1):7-12
[5]Xu Huibin, Gong Shengkai, Liu Fushun.Study on Thermal barrier coating material System of aeroen-gine[J].Acta Aeronautica et Astronautica Sinica, 2000, 21(1):7-12
[6]Gasiorek D, Baranowski P, Malachowski J, Ma-zurkiewicz L, Wiercigroch M.Modelling of guillotine cutting of multi-layered aluminum sheets[J].Journal of Manufacturing Processes, 2018, 34(1):374-388
[7]Wang L, Deng C, Ding K, Guo S, Li Z, Lin X.Model construction and effect of thermally grown oxide dynamic growth on distribution of thermal barrier coatings[J].Ceramics International, 2021, 47(13):18385-18396
[8]Asok Kumar N, Kale SR.Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade[J].International Journal of Heat and Mass Transfer, 2002, 45(24):4831-4845
[9]Cerit M.Thermo mechanical analysis of a partially ceramic coated piston used in an SI engine[J].Surface and Coatings Technology, 2011, 205(11):3499-3505
[10]Huang X, Etsion I, Shao T.Effects of elastic modulus mismatch between coating and substrate on the friction and wear properties of TiN and TiAlN coating systems[J].Wear, 2015, 338(339):54-61
[11]Ceseracciu L, Anglada M, Jiménez-Piqué E.Influence of the elastic mismatch on the Hertzian cone crack path in ceramic bilayers[J].Journal of the European Ceramic Society, 2011, 31(11):1951-1955
[12]Qi K, Yang Y, Hu G, Lu X, Li J.Thermal expansion control of composite coatings on 42CrMo by laser cladding[J].Surface and Coatings Technology, 2020, 397(1):125983-1
[13]郝义意, 梁立红,邱天.热障涂层涡轮叶片残余应力及高温行为模[J].力学学报, 2023, 55(6):1319-1328
[14]Hao Yiyi, Liang Lihong and Qiu Tian.Simulation of Residual Stress and high temperature Behavior of thermal barrier coated turbine blades[J].Chinese Journal of Mechanical Mechanics, 2023, 55(6):1319-1328
[15]Singh R, Schruefer S, Wilson S, Gibmeier J, Vassen R.Influence of coating thickness on residual stress and adhesion-strength of cold-sprayed Inconel 718 coatings[J].Surface and Coatings Technology, 2018, 350(1):64-73
[16]Abdoos M, Yamamoto K, Bose B, Fox-Rabinovich G, Veldhuis S.Effect of coating thick-ness on the tool wear performance of low stress TiAlN PVD coating during turning of compacted graphite iron (CGI)[J].Wear. 2019 Mar; 422–423:128–136., 2019, 422-423(1):128-136
[17]Biaas M.Finite element analysis of stress distribution in thermal barrier coatings[J].Surface and Coatings Technology, 2008, 202(24):6002-6010
[18]Espinoza C, Ramos-Moore E, Celentano D.Effect of microstructure on thermoelastic stresses in Al2O3Ti(C,N,O)Ti(C,N) coating systems studied by Finite Element Method simulations[J].Materials Letters, 2021, 295(1):129777-4
[19]Wen Z, Zhang X, Yue X, Wang X, Zhang C, Yue Z.FEM analysis of the stress response and failure mechanism of SiC-coated CfSiC composites during thermal shock[J].Ceramics International, 2021, 47(15):21996-22005
[20]Zhang Y, Gu Y, Chen JT.Boundary element analysis of the thermal behaviour in thin-coated cut-ting tools[[J].Engineering Analysis with Boundary Elements, 2010, 34(9):775-784
[21]Vallepuga Espinosa J, Foces Mediavilla A.Boundary element method applied to three dimensional thermoelastic contact[J].Engineering Analysis with Boundary Elements, 2012, 36(6):928-933
[22]Gu Y, Chen W, Zhang C.Stress analysis for thin multilayered coating systems using a sinhtrans-formed boundary element method[J].International Journal of Solids and Structures, 2013, 50(20-21):3460-3471
[23]Kim DH, Kim KK, Park KB, Yun JH, Seok CS.Prediction of thermal fatigue life based on the micro-structure of thermal barrier coating applied to single-crystal CMSX-4 considering stress ratio[[J].Ceramics International, 2021, 47(15):21950-21958
[24]Abdelgawad A, Al-Athel K.Effect of TGO thickness,pores,and creep on the developed residual stresses in thermal barrier coatings under cyclic loading using SEM image-based finite element model[J].Ceramics International, 2021, 47(14):20064-76
[25]董曼红.带隔热涂层构件温度和应力分析边界元法及其应用[D]. 西北工业大学; 2001.
[26]Dong Manhong.The Boundary element Method for Temperature and Stress Analysis of components with thermal insulation coating and its application [D]. Northwestern Polytechnical University; 2001.
[27]Gasiorek D, Baranowski P, Malachowski J, Ma-zurkiewicz L, Wiercigroch M.Modelling of guillo-tine cutting of multi-layered aluminum sheets[J].Journal of Manufacturing Processes, 2018, 34(1):374-388
[28]Wang L, Deng C, Ding K, Guo S, Li Z, Lin X.Model construction and effect of thermally grown oxide dynamic growth on distribution of thermal barrier coatings[J].Ceramics International, 2021, 47(13):18385-18396
[29]Zhou C, Zhang Q, Li Y.Thermal shock behavior of nanostructured and microstructured thermal barrier coatings on a Fe-based alloy[J].Surface and Coatings Technology, 2013, 217(1):70-75
[30]Krella AK, Sobczyk AT, Krupa A, Jaworek A.Thermal resistance of Al2O3 coating produced by electrostatic spray deposition method[J].Mechanics of Materials, 2016, 98(1):120-33
[31]Toyama H, Niwa M, Xu J, Yonezu A.Failure assessment of a hard brittle coating on a ductile sub-strate subjected to cyclic contact loading[J].Engineering Failure Analysis, 2015, 57(1):118-128
[32]李华波, 许金泉, 杨震.等厚双层涂层材料受切向集中力作用的三维理论解[J].工程力学, 2006, 23(4):45-51
[33]Li Huabo, Xu Jinquan, Yang Zhen.Three-dimensional theoretical Solution of equal thickness double layer coating material subjected to tangential concentrated force[J].Engineering Mechanics, 2003, 23(4):45-51
[34]Ding HJ, Guo FL, Hou PF.A general solution for piezothermoelasticity of transversely isotropic piezoelectric materials and its applications[[J].International Journal of Engineering Science, 2000, 38(13):1415-1440
[35]丁皓江, 王耘.横观各向同性弹性层点力解[J].应用数学和力, 1996, 17(4):297-305
[36]Ding Haojiang, Wang Yun.Point Force solution of transvertically isotropic elastic layer[J].Applied Mathematics and Mechanic, 1996, 17(4):297-305
[37]Chen WQ, Zhu J, Li XY.General solutions for elasticity of transversely isotropic materials with thermal and other effects: A review[J].Journal of Thermal Stresses, 2019, 42(1):90-106
[38]陈伟球, 丁皓江.横观各向同性三维热弹性力学通解及其势理论法[J].力学学报, 2003, 35(5):578-583
[39]Chen Weiqiu, Ding Haojiang.General Solution of transverse-isotropic three-dimensional thermoelasticity and its Potential Theory Method[J].Chinese Journal of Mechanical Mechanic, 2003, 35(5):578-583
[40]Hou PF, Jiang HY, Tong J, Xiong SM.Study on the coated isotropic thermoelastic material based on the three-dimensional Green’s function for a point heat source[J].International Journal of Mechanical Sciences, 2014, 83(1):155-162
[41]Tong J, Xu ZL, Li JP, Zhang Y, Hou PF.Green’s function for a line heat source acting on the surface of a coated isotropic thermoelastic material[J].Journal of Thermal Stresses, 2019, 42(2):279-293
[42]Jiang HJ, Dai HL.Analytical solutions for three-dimensional steady and transient heat conduction problems of a double-layer plate with a local heat source[J].International Journal of Heat and Mass Transfer, 2015, 89(1):652-666
[43]Shi Z, Ramalingam S.Thermal and mechanical stresses in transversely isotropic coatings[[J].Surface and Coatings Technology, 2001, 138(2-3):173-84
[44]Ang ASM, Berndt CC.Investigating the anisotropic mechanical properties of plasma sprayed yttria-stabilised zirconia coatings[J].Surface and Coatings Technology, 2014, 259(C):551-559
[45]Chen WQ, Ding HJ, Ling DS.Thermoelastic field of a transversely isotropic elastic medium con-taining a penny-shaped crack: exact fundamental solution[J].Int J Solids Struct, 2004, 4(1):69-83
[46]Shang S, Hou P, Li Q, Zhang W.Three-dimensional exact solutions of double-coated structure with arbitrary thickness under normal point load[J].Appl Math Model, 2023, 117(1):762-785
文章导航

/