基于ADRC-RBF的倾转四旋翼无人机姿态自适应控制

  • 贺炅 ,
  • 任斌武 ,
  • 杜思亮 ,
  • 徐尤松 ,
  • 王博
展开
  • 1. 南京航空航天大学
    2. 淮阴工学院;南京航空航天大学

收稿日期: 2025-05-07

  修回日期: 2025-05-19

  网络出版日期: 2025-05-19

基金资助

国家自然科学基金

Adaptive Attitude Control for Tilt-Quadrotor UAV Based on ADRC-RBF

  • HE Gui ,
  • REN Bin-Wu ,
  • DU Si-Liang ,
  • XU You-Song ,
  • WANG Bo
Expand

Received date: 2025-05-07

  Revised date: 2025-05-19

  Online published: 2025-05-19

摘要

针对倾转四旋翼无人机在复杂扰动下自主飞行的控制稳定性和精度问题,提出了一种基于径向基函数(Radial Basis Function, RBF)神经网络的增强型自抗扰控制(Active Disturbance Rejection Control, ADRC)参数自适应控制策略。首先,基于分部件机理建模方法建立覆盖全飞行模式的倾转四旋翼无人机非线性飞行动力学模型。其次,为了解决非线性自抗扰控制器参数自适应在线整定问题,利用具有强非线性函数逼近能力的RBF神经网络,将控制器实时解算的控制输入和倾转四旋翼无人机的状态输出作为神经网络的输入,基于神经网络的输出构建参数自适应调节规则,对自抗扰控制器扰动估计扩张状态观测器(Extended State Observer, ESO)部分和非线性状态误差反馈控制律(Nonlinear State Error Feedback, NLSEF)部分的参数在线动态调整,实现对模型不确定性及外界扰动有效的估计和补偿。最后,基于ADRC-RBF控制器构建倾转四旋翼无人机姿态自适应控制系统,在典型飞行模式下进行姿态控制仿真验证。仿真结果表明:相较于传统的ADRC控制器,本文设计的ADRC-RBF控制器具有更好的抗干扰性、自适应能力和稳定性。

本文引用格式

贺炅 , 任斌武 , 杜思亮 , 徐尤松 , 王博 . 基于ADRC-RBF的倾转四旋翼无人机姿态自适应控制[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32189

Abstract

An enhanced active disturbance rejection control (ADRC) parameter adaptive control strategy based on radial basis function (RBF) neural network is proposed for the control stability and accuracy of the autonomous flight of tilt-quadrotor UAVs under complex disturbances. Firstly, based on the component mechanism modelling method, a nonlinear flight dynamics model of the tilt-quadrotor UAV covering the whole flight mode is established. Secondly, the RBF neural network with strong nonlinear function approximation ability is used to solve the problem of online adaptive tuning of nonlinear active disturbance rejection controller parameters. The con-trol input solved by the controller in real time and the state output of the tilt-quadrotor UAV are used as the input of the neural net-work. Based on the output of the neural network, the parameter adaptive adjustment rules are constructed, and the parameters of the extended state observer (ESO) part and the nonlinear state error feedback control (NLSEF) part of the active disturbance rejection controller are dynamically adjusted online to realise the effective estimation and compensation of model uncertainty and external dis-turbance. Finally, the attitude adaptive control system of the tilt-quadrotor UAV is constructed based on the ADRC-RBF controller, and the attitude control simulation is carried out in the typical flight mode. The simulation results show that compared with the tradi-tional ADRC controller, the ADRC-RBF controller designed in this paper has better anti-interference, adaptive ability and stability.

参考文献

[1]CHEN Z H. Based on intelligent attack and defense command technology system for multi-rotor tiltingverti-cal takeoff and landing swarm uavs[C]//2023 IEEE In-ternational Conference on e-Business Engineering (ICEBE). Sydney: IEEE, 2023: 276-280.;
[2]HAMROUNI A, GHAZZAI H, MENOUAR H, et al. Multi-Rotor UAVs in Crowd Management Systems: Opportunities and Challenges[J]. IEEE Internet of Things Magazine, 2023, 6(4): 74-80.;
[3]REJEB A, REJEB K, SIMSKE S J, et al. Drones for supply chain management and logistics: a review and re-search agenda[J]. International Journal of Logistics Re-search and Applications, 2023, 26(6): 708-731.;
[4]CHEN H, LAN Y, FRITZ B K, et al. Review of agricul-tural spraying technologies for plant protection using unmanned aerial vehicle (UAV)[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(1): 38-49.;
[5]SHUKLA D, KOMERATH N. Multirotor drone aero-dynamic interaction investigation[J]. Drones, 2018, 2(4): 43-55.;
[6]SASANE A, BORKAR S, MAJETY P, et al. Optimizing Endurance in Fixed Wing UAVs[C]//International Con-ference on Smart Computing and Communication. Sin-gapore: Springer Nature Singapore, 2024: 219-229.;
[7]LIU Y, WANG Y, LI H, et al. Runway-Free Recovery Methods for Fixed-Wing UAVs: A Comprehensive Re-view[J]. Drones, 2024, 8(9): 463-493.;
[8]ROJO-RODRIGUEZ E U, ROJO-RODRIGUEZ E G, Araujo-Estrada S A, et al. Design and performance of a novel tapered wing tiltrotor UAV for hover and cruise missions[J]. Machines, 2024, 12(9): 653-682. ;
[9]ZHONG L, YUQING H, LIYING Y, et al. Control techniques of tilt rotor unmanned aerial vehicle systems: A review[J]. Chinese Journal of Aeronautics, 2017, 30(01): 135-148.;
[10]HANLIN S, CHEN Z, YULONG X. Mathematical Modeling and Stability Analysis of Tiltrotor Aircraft [J]. Drones, 2022, 6(4):92-109.;
[11]TRAN S A, LIM J W. Interactional aerodynamics of the xv-15 tiltrotor aircraft during conversion maneuvers[J]. Journal of the American Helicopter Society, 2022, 67(3): 56-68.;
[12]LU K, TIAN H, ZHEN P, et al. Conversion flight control for tiltrotor aircraft via active disturbance rejection con-trol[J]. Aerospace, 2022, 9(3): 155-172.;
[13]HOUARI A, BACHIR I, MOHAMED D K, et al. PID vs LQR controller for tilt rotor airplane[J]. International Journal of Electrical and Computer Engineering (IJECE), 2020, 10(6): 6309-6318.;
[14]BAUERSFELD L, DUCARD G. Fused-PID control for tilt-rotor VTOL aircraft[C]//2020 28th Mediterranean Conference on Control and Automation (MED). San Raphael: IEEE, 2020: 703-708.;
[15]ESKANDARPOUR A, MEHRANDEZH M, GUPTA K, et al. A constrained robust switching MPC structure for tilt-rotor UAV trajectory tracking problem[J]. Nonlin-ear Dynamics, 2023, 111(18): 17247-17275.;
[16]ZHAO Y, YU X, YUAN Y. INDI-Based Control for Full Flight Modes of Tiltrotor/Tiltwing Air-craft[C]//AIAA SCITECH 2025 Forum. Orlando: AIAA 2025: 0316.;
[17]DUCARD G, CARUGHI G. Neural Network Design and Training for Longitudinal Flight Control of a Tilt-Rotor Hybrid Vertical Takeoff and Landing Unmanned Aerial Vehicle[J]. Drones, 2024, 8(12): 727-760.;
[18]韩京清.自抗扰控制技术[J].前沿科学,2007,1(01):24-31.;
[19]HAN J. From PID to active disturbance rejection con-trol[J]. IEEE transactions on Industrial Electronics, 2009, 56(3): 900-906.;
[20]韩京清. 自抗扰控制器及其应用[J].控制与决策,1998,13(01):19-23.;
[21]ZHANG Y, FAN C, ZHAO F, et al. Parameter tuning of ADRC and its application based on CCCSA[J]. Nonlin-ear dynamics, 2014, 7(2): 1185-1194.;
[22]WANG Z, ZU R, DUAN D, et al. Tuning of ADRC for QTR in transition process based on NBPO hybrid algo-rithm[J]. IEEE Access, 2019, 7(99): 177219-177240.;
[23]REN B W, DU S L, CUI Z Z, et al. High-precision tra-jectory tracking control of helicopter based on ant colony optimization-slime mould algorithm[J]. Chinese Journal of Aeronautics, 2025, 38(1): 103172-103193.;
[24]LIU N J, CAI Z H, ZHAO J, et al. Predictor-based mod-el reference adaptive roll and yaw control of a quad-tiltrotor UAV[J]. Chinese Journal of Aeronautics, 2020, 33(1): 282-295.;
文章导航

/