基于离散伴随的梯度优化方法是实现层流减阻优化设计的重要技术途径之一。层流翼转捩位置及气动性能对压力分布形态特征变化的敏感性,使得多约束下层流翼气动优化问题非线性较强、多极值特性较突出,显著增大了梯度优化方法的寻优难度及优化效能的鲁棒性。本文引入基于几何光顺与基于格拉斯曼流形几何表征的设计空间重构方法,滤除设计空间中的高几何畸变构型,并将高维设计空间映射到更紧致的低维无几何约束设计空间,耦合离散伴随方法,发展了设计空间几何过滤与流形重构增强的层流翼梯度优化设计方法。针对RAE2822翼型,基于不同几何参数化形式开展了气动优化设计。优化结果显示,相比传统层流翼梯度优化方法,优化效果对几何参数化形式的依赖性显著降低,算法寻优鲁棒性极大提高。本文提出的层流翼梯度优化方法对于发展工程实用的整机级层流翼高效气动优化技术具有重要意义。
The discrete adjoint-based gradient optimization method is one of the pivotal technical approaches for achieving laminar drag reduction optimization. The sensitivity of laminar wing transition location and aerodynamic performance to changes in pressure distribution makes the aerodynamic optimization problem under multiple constraints highly nonlinear and prone to prominent multimodality. These challenges significantly increase the optimization difficulty of gradient-based methods and compromise their robustness. This paper introduces a design space reconstruction method based on geometric smoothing and the geometric representation of Grassmann manifolds, which filters out high geometrical distorted configurations and maps the high-dimensional design space to a more compact low-dimensional design space without geometric constraints. Coupled with the discrete adjoint method, a design space geometric filtering and manifold reconstruction-enhanced gradient optimization design method for laminar flow wings has been developed. Aerodynamic optimization studies on the RAE2822 airfoil using different geometric parameterization forms demonstrate that the proposed method significantly reduces the dependence of optimization results on specific parameterization schemes, while greatly improving algorithmic robustness compared to traditional gradient-based approaches. The gradient optimization method proposed in this paper is of significant importance for the development of efficient aerodynamic optimization technologies for full-aircraft laminar wings in practical engineering applications.
[1]杨体浩, 白俊强, 段卓毅, 等.喷气式客机层流翼气动设计综述[J].航空学报, 2022, 43(11):26-62
[2]YANG T H, BAI J Q, DUAN Z Y, et al.Aerodynamic design of laminar flow wings for jet aircraft: Review[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11):0-0
[3]CELLA U, QUAGLIARELLA D, DONELLI R, et al.Design and test of the UW-5006 transonic natural-laminar-flow wing[J].Journal of aircraft, 2010, 47(3):783-795
[4]HAN Z H, CHEN J, ZHANG K S, et al.Aerodynamic shape optimization of natural-laminar-flow wing us-ing surrogate-based approach[J].AIAA Journal, 2018, 56(7):2579-2593
[5]RASHAD R, ZINGG D W.Aerodynamic shape opti-mization for natural laminar flow using a discrete-adjoint approach[J].AIAA journal, 2016, 54(11):3321-3337
[6]SHI Y Y, MADER C A, HE S C, et al.Natural lami-nar-flow airfoil optimization design using a discrete adjoint approach[J].AIAA Journal, 2020, 58(11):4702-4722
[7]KENWAY G K W, MADER C A, HE P, et al.Effective Adjoint Approaches for Computational Fluid Dynamics[J].Progress in Aerospace Sciences, 2019, 1(110):0-0
[8]LYU Z J, XU Z L, MARTINS J.Benchmarking opti-mization algorithms for wing aerodynamic design op-timization[C]//Proceedings of the 8th International Conference on Computational Fluid Dynamics, Chengdu, Sichuan, China. 2014, 11: 585.
[9]BONS N P, HE X, MADER C A, et al.Multimodality in aerodynamic wing design optimization[J].AIAA Journal, 2019, 57(3):1004-1018
[10]YU Y, LYU Z J, XU Z L, et al.On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization[J]. Aerospace Sci-ence and Technology[J].Aerospace Science and Technology, 2018, 1(75):183-199
[11]SILVA V, TENENBAUM J.Global versus local meth-ods in nonlinear dimensionality reduction[J].Advances in Neural Information Processing Systems, 2002, 15(0):0-0
[12]FRANZ T.Reduced-order modeling for steady tran-sonic flows via manifold learning[D]. Dissertation, Braunschweig, Technische Universit?t Braunschweig, 2016.
[13]FRANZ T, ZIMMERMANN R, G?RTZ S, et al.Inter-polation-based reduced-order modelling for steady transonic flows via manifold learning[J].International Journal of Computational Fluid Dynamics, 2014, 28(3-4):106-121
[14]DECKER K, IYENGAR N, RAJARAM D, et al.Man-ifold Alignment-Based Nonintrusive and Nonlinear Multifidelity Reduced-Order Modeling[J].AIAA Journal, 2023, 61(1):454-474
[15]邱亚松.基于数据降维技术的气动外形设计方法[D].西北工业大学, 2015.
[16]QIU Y S.Aerodynamic Shape Design Methods based on Data Dimension Reduction Approaches[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chi-nese).
[17]詹炜.求解高维多目标优化问题的流形学习算法研究[D].中国地质大学, 2014.
[18]ZHAN W.Research on Manifod Learning Algorithm for High-Dimensional Multi-Objective Optimization Problems[D]. Wuhan: China University of Geosci-ences, 2014 (in Chinese).
[19]宋超, 李伟斌, 周铸等.基于流形结构重建的多目标气动优化算法[J].航空学报, 2020, 41(05):176-185
[20]SONG C, LI W B, ZHOU Z, et al.Multi-objective aerodynamic optimization algorithm based on mani-fold reconstruction[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5):623687-623687
[21]GREY ZJ, DORONINA OA, GLAWS A.Separable shape tensors for aerodynamic design[J].Journal of Computational Design and Engineering, 2023, 10(1):468-487
[22]PANG B, ZHANG Y, LI J L, et al.Data-driven surro-gate model for aerodynamic design using separable shape tensor method[J].Chinese Journal of Aero-nautics, 2024, 37(9):41-58
[23]BRYNER D et al.2D affine and projective shape analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(5):998-1011
[24]YANG T H, CHEN Y F, SHI Y Y, et al.Stochastic investigation on the robustness of laminar-flow wings for flight tests[J].AIAA Journal, 2022, 60(4):2266-2286
[25]杨体浩, 王一雯, 王雨桐, 等.基于离散伴随的层流翼优化设计方法[J].航空学报, 2022, 43(12):236-255
[26]YANG T H, WANG Y W, WANG Y T, et al.Discrete adjoint-based optimization approach for laminar flow wings[J].ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12):126-132
[27]YANG T H, ZHONG H, CHEN Y F, et al.Transition prediction and sensitivity analysis for a natural lami-nar flow wing glove flight experiment[J].Chinese Journal of Aeronautics, 2021, 34(8):34-47