面向移动边缘网络的多目标进化深度确定性策略梯度算法

  • 张磊 ,
  • 田灿 ,
  • 文方青 ,
  • 张清河 ,
  • 刘含
展开
  • 1. 三峡大学湖北省水电工程智能视觉监测重点实验室
    2. 三峡大学计算机与信息学院

收稿日期: 2025-02-20

  修回日期: 2025-05-10

  网络出版日期: 2025-05-13

基金资助

国家自然科学基金;国家自然科学基金;国家自然科学基金

Multi-objective Evolution with Deep Deterministic Strategy Gradient Algorithm for Mobile Edge Networks

  • ZHANG Lei ,
  • TIAN Can ,
  • WEN Fang-Qing ,
  • ZHANG Qing-He ,
  • LIU Han
Expand

Received date: 2025-02-20

  Revised date: 2025-05-10

  Online published: 2025-05-13

摘要

无人机(Unmanned aerial vehicle, UAV)辅助的移动边缘计算(Mobile edge computing, MEC)网络在应急响应与实时监测等领域展现出极大潜力。然而,MEC网络的高效运行却面临着能耗高、时延大等多重优化目标的挑战。为此,本文提出了一种面向UAV辅助MEC网络优化的多目标进化深度确定性策略梯度算法(Multi-objective Evolution with Deep Deterministic Policy Gradient, MOE-DDPG)。首先,建立了一种集成的多目标优化模型,通过最小化MEC网络的时延和能耗,同时最大化UAV的任务完成数量,来保障MEC网络的综合性能。其次,针对传统DDPG算法在处理多目标优化问题时,难以充分权衡各个目标的难题,提出一种用于权重向量与个体匹配的双向选择策略,从而大大增强种群的多样性。最后,在有机融合MOE算法和DDPG算法的基础上,提出了一种新颖的MOE-DDPG算法框架,该算法能够实时地优化MEC网络的整体性能。实验结果表明,MOE-DDPG算法不仅在提升Pareto解集的分布性和收敛性方面作用明显,而且在同时降低能耗、时延以及提高任务完成数量上效果显著。

本文引用格式

张磊 , 田灿 , 文方青 , 张清河 , 刘含 . 面向移动边缘网络的多目标进化深度确定性策略梯度算法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31880

Abstract

The mobile edge computing network assisted by unmanned aerial vehicles , demonstrates great potential in emergency response, real-time monitoring, and other fields. However, the efficient operation of MEC networks en-counters challenges stemming from multiple optimization objectives, such as high energy consumption and high latency. Therefore, this paper introduces a Multi-Objective Evolution with Deep Deterministic Policy Gradient (MOE-DDPG) algorithm for UAV-assisted MEC network optimization. Firstly, an integrated multi-objective optimization model is established to ensure comprehensive performance of the MEC network by minimizing latency and energy consumption while maximizing the number of completed UAV tasks. Secondly, a bidirectional selection strategy for weight vector and individual matching is proposed to address the difficulty of balancing various objectives in traditional DDPG algorithms when dealing with multi-objective optimization problems, thereby significantly enhancing population diversity. Finally, by organically fusing the MOE algorithm and DDPG algorithm, a novel MOE-DDPG algorithm framework is proposed, which can optimize the overall performance of the MEC network in real time. The experimental results show that the MOE-DDPG algorithm not only significantly improves the distribution and convergence of the Pareto solution set but also effectively reduces energy consumption, latency, and increases the number of completed tasks simultaneously.

参考文献

[1]CAO B, YE H, LIU J, et al.Smart: cost-aware service migration path selection based on deep reinforcement learning[J].IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9):12421-12436
[2]CHENG S, REN T, ZHANG H, et al.A stackelberggame-based framework for edge pricing and resource allocation in mobile edge computing[J].IEEE Internet of Things Journal, 2024, 11(11):20514-20530
[3]李伟, 郭艳, 李宁, 等.智能反射面辅助无人机移动边缘计算任务数据最大化方法[J].航空学报, 2023, 44(19):328486-
[4]SHAH Z, JAVED U, NAEEM M, et al.Mobile edge computing (MEC)-enabled UAV placement and computation efficiency maximization in disaster scenario[J].IEEE Transactions on Vehicular Technology, 2023, 72(10):13406-13416
[5]ZHAI J, BI J, YUAN H, et al.Cost-minimized microservice migration with autoencoder-assisted evolution in hybrid cloud and edge computing systems[J].IEEE Internet of Things Journal, 2024, 11(24):40951-40967
[6]李伟, 郭艳, 何明, 等.满意度驱动下无人机移动边缘计算服务缓存和资源分配方法[J].航空学报, 2024, 45(19):330017-
[7]HUI M, CHEN J, YANG L, et al.UAV-assisted mobile edge computing: optimal design of UAV altitude and task offloading[J].IEEE Transactions on Wireless Communications, 2024, 23(10):13633-13647
[8]屈毓锛, 秦蓁, 马靖豪, 等.面向空地协同移动边缘计算的服务布置策略[J].计算机学报, 2022, 45(4):781-797
[9]CAO L, HUO T, LI S, et al.Cost optimization in edge computing: a survey[J]. Artificial Intelligence Review, 2024, 57: 312-
[10]EJAZ M, GUI J, ASIM M, et al.RL-planner: reinforcement learning-enabled efficient path planning in multi-UAV MEC systems[J].IEEE Transactions on Network and Service Management, 2024, 21(3):3317-3329
[11]LI B, LIU Y, TAN L, et al.Digital twin assisted task offloading for aerial edge computing and networks[J].IEEE Transactions on Vehicular Technology, 2022, 71(10):10863-10877
[12] ZHANG S, CAO R.Multi-objective optimization for UAV-enabled wireless powered IoT networks: an LSTM-based deep reinforcement learning approach [J].IEEE Communications Letters, 2022, 26(12): 3019-3023.
[13] WANG L, ZHANG G. Joint service caching, resource allocation and computation offloading in three-tier cooperative mobile edge computing system [J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 3343-3353.
[14] LIU Y, YAN J, ZHAO X. Deep reinforcement learning based latency minimization for mobile edge computing with virtualization in maritime UAV communication network[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4225-4236.
[15] KONG X, NI C, DUAN G, et al. Energy consumption optimization of UAV-assisted traffic monitoring scheme with tiny reinforcement learning [J]. IEEE Internet of Things Journal, 2024, 11(12): 21135-21145.
[16] LI L, GUAN W, ZHAO C, et al. Trajectory planning, phase shift design, and IoT devices association in flying-RIS-assisted mobile edge computing [J]. IEEE Internet of Things Journal, 2024, 11(1): 147-157.
[17] ZHANG S, JIN H, GUO P. IRS-assisted energy efficient communication for UAV mobile edge computing [J]. Computer Networks, 2024, 246: 110387.
[18] AL-HILO A, SAMIR M, ELHATTAB M, et al. RISassisted UAV for timely data collection in IoT networks[J]. IEEE Systems Journal, 2023, 17(1): 431-442.
[19] SHI J, LI C, GUAN Y, et al. Multi-UAV-assisted computation offloading in DT-based networks: a distributed deep reinforcement learning approach [J]. Computer Communications, 2023, 210: 217-228.
[20] ZHAO X, ZHAO T, WANG F, et al. SAC-based UAV mobile edge computing for energy minimization and secure data transmission [J]. Ad Hoc Networks, 2024, 157: 103435.
[21] LI B, XIE W, YE Y, et al. FlexEdge: Digital twin-enabled task offloading for UAV-aided vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 11086-11091.
[22] YU Y, TANG J, HUANG J, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG Algorithm [J]. IEEE Transactions on Communications, 2021, 69(9): 6361-6374.
[23] ZHOU C, WU W, HE H, et al. Deep reinforcement learning for delay-oriented IoT task scheduling in sagin[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 911-925.
[24] 季薇, 杨许鑫, 李飞, 等. 无人机辅助MEC系统中基于最优SIC顺序的能耗优化方案[J]. 通信学报, 2024, 45(2): 18-30.
[25] YI X, YU H, XU T. Solving multi-objective weapon-target assignment considering reliability by improved MOEA/D-AM2M[J]. Neurocomputing, 2024, 563: 126906.
[26] PERVEZ F, SULTANA A, YANG C, et al. Energy and latency efficient joint communication and computation optimization in a multi-UAV-assisted MEC network [J]. IEEE Transactions on Wireless Communications, 2024, 23(3): 1728-1741.
[27] SONG F, DENG M, XING H, et al. Energy-efficient trajectory optimization with wireless charging in UAVassisted MEC based on multi-objective reinforcement learning [J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 10867-10884.
文章导航

/