基于卷积神经网络的超声速后掠翼横流转捩预测方法

  • 樊佳坤 ,
  • 艾俊强 ,
  • 谢露 ,
  • 董宁娟 ,
  • 徐家宽 ,
  • 乔磊 ,
  • 白俊强
展开
  • 1. 西北工业大学
    2. 中国一航第一飞机设计研究院
    3. 航空工业第一飞机设计研究院
    4. 中国飞机强度研究所

收稿日期: 2025-03-21

  修回日期: 2025-05-06

  网络出版日期: 2025-05-08

Crossflow induced transition prediction method for supersonic swept-wing based on convolutional neural networks

  • FAN Jia-Kun ,
  • AI Jun-Qiang ,
  • XIE Lu ,
  • DONG Ning-Juan ,
  • XU Jia-Kuan ,
  • QIAO Lei ,
  • BAI Jun-Qiang
Expand

Received date: 2025-03-21

  Revised date: 2025-05-06

  Online published: 2025-05-08

摘要

超声速客机典型大后掠角机翼层流设计面临横流失稳诱导的边界层转捩问题,基于线性稳定性理论的标准eN方法涉及特征值问题的求解,需要频繁的交互式运行,难以满足快速转捩预测及迭代设计的需要。针对上述难点,对三维可压缩边界层相似性解进行线性稳定性分析生成大批量的特征值样本,借助卷积层的空间特征提取能力实现对输入基本流剖面特征的自动识别,并与边界层外边缘流动参数及扰动参数等一起经全连接层映射到特征值或当地增长率,从而构建适用于超声速横流驻波失稳及转捩预测的eN卷积神经网络模型。通过对一系列变工况和几何的无限展长后掠翼进行稳定性分析,该神经网络模型对扰动增长因子的预测结果与标准eN方法高度吻合;最后根据美国航空航天局的一款超声速后掠翼横流转捩标模的相关稳定性分析及飞行试验数据,对该神经网络模型在真实有限翼展三维构型中的转捩预测能力进行了验证,结果表明其具有较强的泛化能力并保证了较高的准确性,是一种较为高效且可靠的建模方法。

本文引用格式

樊佳坤 , 艾俊强 , 谢露 , 董宁娟 , 徐家宽 , 乔磊 , 白俊强 . 基于卷积神经网络的超声速后掠翼横流转捩预测方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32012

Abstract

The typical large sweep angle wing laminar flow design of supersonic aircraft faces the problem of boundary layer transition induced by crossflow instability. The standard eN method based on linear stability theory involves solving eigen-value problems and requires frequent interactive operations, which cannot meet the needs of fast transition prediction and iterative design. In response to the above difficulties, a linear stability analysis is conducted on the similarity solution of the three-dimensional compressible boundary layer to generate a large number of eigenvalue samples. The powerful spatial feature extraction ability of convolutional layers is utilized to achieve automatic recognition of the input baseflow profile features, and together with the flow parameters and disturbance parameters at the outer edge of the boundary layer, they are mapped to eigenvalue or local growth rates through fully-connected layers, thus constructing an eN neural network model suitable for predicting the instability and transition of supersonic stationary crossflow waves. By conducting stability analysis on a series of variable operating conditions and geometries of infinite swept wings, the neural network model's prediction results of disturbance amplification factors are in good agreement with the standard eN method; Finally, based on the stability analysis and flight test data of a supersonic swept wing crossflow transition model developed by NASA, the neural network model's ability to predict transition in real three-dimensional configurations was verified. The results showed that it has strong generalization ability and ensures high accuracy, making it a relatively simple and reliable modeling method.

参考文献

[1] Darren Hulst. Commercial Market Outlook 2024-2043[R]. Chicago: Boeing Commercial Airplanes, 2024.
[2] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J].航空学报, 2023, 44(02): 20-46.
[3] Morgenstern J, Norstrud N, Stelmack M, et al. Ad-vanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3)[C]//28th AIAA Applied Aerodynamics Conference. 2010: 5114.
[4] Liebhardt B, Lütjens K, Ueno A, et al. JAXA's S4 su-personic low-boom airliner–a collaborative study on aircraft design, sonic boom simulation, and market pro-spects[C]//AIAA Aviation 2020 Forum. 2020: 2731.
[5] 韩忠华,乔建领,丁玉临,等.新一代环保型超声速客机气动相关关键技术与研究进展[J].空气动力学学报,2019,37(4):620-635.
[6] 聂晗,宋文萍,韩忠华,等.面向超声速民机层流机翼设计的转捩预测方法[J].航空学报,2022,43(11):171-189.
[7] 袁吉森,孙爵,李玲玉,等.超声速飞机层流布局设计与评估技术进展[J].航空学报,2022,43(11):63-98.
[8] Arnal D, Juillen J C, Reneaux J, et al. Effect of wall suction on leading edge contamination[J]. Aerospace Science and Technology, 1997, 1(8): 505-517.
[9] Tani I, Aihara Y. G?rtler vortices and boundary-layer transition[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1969, 20: 609-618.
[10] Reshotko E. Boundary-layer stability and transition[J]. Annual review of fluid mechanics, 1976, 8: 311-349.
[11] Saric W, Reed H. Crossflow instabilities-theory & technology[C]//41st Aerospace Sciences Meeting and Exhibit. 2003: 771.
[12] 于晟浩, 袁吉森, 高亮杰, 等. 三维超声速后掠翼转捩的eN-神经网络模型预测[J]. 力学学报, 2023, 55(6): 1236-1246.
[13] 周恒,赵耕夫. 流动稳定性[M]. 北京: 国防工业出版社, 2004: 77-78.
[14] Saric W, Reed H, and Kerschen E. Boundary layer receptivity to freestream disturbances. Annual Review of Fluid Mechanics, 34(1):291–319, 2002.
[15] Saric W, Reed H, and White E. Stability and transition of three-dimensional boundary layers. Annual Review of Fluid Mechanics, 35(1):413–440, 2003.
[16] Müller B, Bippes H. Experimental study of instability modes in a three-dimensional boundary layer[J]. In AGARD, 1989.
[17] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual review of fluid me-chanics, 1998, 30(1): 539-578.
[18] Huai X, Joslin R D, Piomelli U. Large-eddy simulation of transition to turbulence in boundary layers[J]. Theo-retical and computational fluid dynamics, 1997, 9: 149-163.
[19] Di Pasquale D, Rona A, Garrett S. A selective review of transition modelling for CFD[C]//39th AIAA fluid dy-namics conference. 2009: 3812.
[20] Van Ingen J L. A suggested semi-empirical method for the calculation of the boundary layer transition re-gion[J]. University of Techn., Dept. of Aerospace Eng., Report UTH-74, 1956.
[21] Krumbein A, Krimmelbein N, Grabe C. Streamline-based transition prediction techniques in an unstruc-tured computational fluid dynamics code[J]. AIAA Journal, 2017, 55(5): 1548-1564.
[22] Sturdza P. An aerodynamic design method for super-sonic natural laminar flow aircraft[M]. stanford univer-sity, 2004.
[23] Arnal D. Transition prediction in transonic flow[C]//Symposium Transsonicum III: IUTAM Sym-posium G?ttingen, 24.–27.5. 1988. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989: 253-262.
[24] Drela M, Giles M B. Viscous-inviscid analysis of tran-sonic and low Reynolds number airfoils[J]. AIAA Jour-nal, 1987, 25(10): 1347-1355.
[25] Coder J and Maughmer M. Computational fluid dy-namics compatible transition modeling using an ampli-fication factor transport equation. AIAA Journal, 52(11):2506–2512, 2014.
[26] Xu J, Han X, Qiao L, Bai J, and Zhang Y. Fully local amplification factor transport equation for stationary crossflow instabilities. AIAA Journal, 57(7):2682–2693, 2019.
[27] Xu J, Qiao L, and Bai J. Improved local amplification factor transport equation for stationary crossflow insta-bility in subsonic and transonic flows. Chinese Journal of Aeronautics, 2020, 33(12):3073–3081.
[28] Wang Y, Xu J, Qiao L, Zhang Y, and Bai J. Improved amplification factor transport transition model for tran-sonic boundary layers. AIAA Journal, 61(9):3866–3882, 2023.
[29] 唐志共,朱林阳,向星皓,等.智能空气动力学若干研究进展及展望[J].空气动力学学报,2023,41(07):1-35.
[30] Zafar M I, Xiao H, Choudhari M M, et al. Convolution-al neural network for transition modeling based on lin-ear stability theory[J]. Physical Review Fluids, 2020, 5(11): 113903.
[31] Paredes P, Venkatachari B, Choudhari M M, et al. To-ward a practical method for hypersonic transition pre-diction based on stability correlations[J]. AIAA Jour-nal, 2020, 58(10): 4475-4484.
[32] Chang C L. Development of Physics-Based Transition Models for Unstructured-Mesh CFD Codes Using Deep Learning Models[C], AIAA AVIATION 2021 FORUM. 2021: 2828.
[33] Srokowski A, Orszag S. Mass flow requirements for LFC wing design[C]//Aircraft Systems and Technology Meeting. 1977: 1222.
[34] Cebeci T, Stewartson K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4): 398-405.
[35] Mack L. Stability of three-dimensional boundary layers on swept wings at transonic speeds[C]//Symposium Transsonicum III: IUTAM Symposium G?ttingen, 24.–27.5. 1988. Berlin, Heidelberg: Springer Berlin Heidel-berg, 1989: 209-223.
[36] Mack L. On the stability of the boundary layer on a transonic swept wing[C]//17th Aerospace Sciences Meeting. 1979: 264.
[37] Arnal D, Casalis G, Houdeville R. Practical transition prediction methods: subsonic and transonic flows[J]. VKI Lectures Series Advances in Laminar-Turbulent Transition Modelling, 2008.
[38] Owens L R, Beeler G, King R, et al. Supersonic travel-ing crossflow wave characteristics in ground and flight tests[C]//AIAA Scitech 2020 Forum. 2020: 0777.
文章导航

/