新一代载人飞船航天员着陆缓冲系统吸能特性分析

  • 李博 ,
  • 谭沧海 ,
  • 吴琼 ,
  • 余抗 ,
  • 罗敏 ,
  • 许梦川 ,
  • 惠旭龙 ,
  • 刘小川 ,
  • 杨先锋 ,
  • 杨嘉陵
展开
  • 1. 北京航空航天大学
    2. 北京空间飞行器总体设计部
    3. 中国空间技术研究院总体部
    4. 中国飞机强度研究所

收稿日期: 2025-01-15

  修回日期: 2025-05-06

  网络出版日期: 2025-05-08

基金资助

国家自然科学基金

摘要

载人飞船返回舱安全着陆技术是载人航天的关键技术之一。传统缓冲座椅系统能有效缓冲航天员胸背向的冲击载荷,但对水平方向冲击的缓冲能力较弱。为保障新一代载人飞船返回舱在故障着陆工况下航天员的生命安全,本文提出了一种新型并联式缓冲承载一体化系统,通过设计新型轻质变截面空心点阵作为能量吸收材料,使缓冲承载一体化系统具有多向缓冲和承载能力,省去了活塞及运动副等支撑机构,大大提升了系统重量利用效率。首先对点阵胞元及缓冲单元进行优化设计,通过准静态压缩试验及落锤冲击试验对其缓冲性能进行分析。其次,通过仿真分析方法讨论了不同斜冲击角度下空心点阵单元的变形模式,最后基于Ls-dyna有限元分析软件建立了飞船返回舱故障着陆工况下的有限元模型,分析了不同水平及竖直方向冲击的故障着陆工况下航天员过载曲线,初步验证了新一代载人飞船返回舱着陆缓冲设计方案的可行性。

本文引用格式

李博 , 谭沧海 , 吴琼 , 余抗 , 罗敏 , 许梦川 , 惠旭龙 , 刘小川 , 杨先锋 , 杨嘉陵 . 新一代载人飞船航天员着陆缓冲系统吸能特性分析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31811

Abstract

The safe landing technology of manned spacecraft crew modules is one of the key technologies in manned spacecraft. Tradi-tional buffer seats can effectively absorb the impact energy in the chest-back direction of astronauts, but they have weaker cushioning capabilities against impacts in the horizontal direction. This paper proposes a novel parallel buffer-support system to ensure the life safety of astronauts in the event of a manned spacecraft's crew module's hard landing in China’s next-generation manned spacecraft. The buffer-support system has multi-directional cushioning capabilities by selecting light-weight variable-cross-section hollow lattice structures as buffers, eliminating the support mechanisms such as pistons and moving pairs, and greatly improving the weight utilization efficiency of the system. Firstly, the lattice cell and buffer unit are optimized and designed, and their performance is comparatively verified through quasi-static compression tests and drop tower impact tests. Secondly, the deformation modes of the buffer unit under different oblique impact angles are discussed through simulation analysis. Finally, a finite element model of the hard landing of the crew module is established to analyze the astronaut's acceleration curves under hard landing conditions with horizontal impacts from different directions, initially verifying the feasibility of this scheme.

参考文献

[1] 戚发轫. 载人航天器技术[M]. 北京: 国防工业出版社, 2003.QI F R. Manned spacecraft technologies[M]. Beijing: National Defense Industry Press, 2003 (in Chinese).
[2] FRAGOLA, JOSEPH R, et al. How safe must a poten-tial crewed launcher be demonstrated to be before it is crewed. Journal of Loss Prevention in The Process Industries 22: 657-663, 2009.
[3] 谢燕,雷勇军,李道奎,等.缓冲座椅系统着陆冲击响应的研究与分析[J]. 中国空间科学技术, 2007, (06): 37-41. XIE Y, LEI Z J, LI D K, et al. Investigation and Anal-ysis for Landing Impact on Buffer Seat System[D]. Chinese Space Science and Technology, 2007, (06): 37-41. (in Chinese).
[4]杨雷, 张柏楠, 郭斌等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36 (03): 703-713.
YANG L, ZHANG B N, GUO B, et al. Conception Re-search of China’s Next-generation Manned Spacecraft [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(03): 703-713 (in Chinese).
[5]李建阳, 张常龙, 邢伟. 新一代载人飞船返回舱着陆缓冲过程仿真研究[J]. 航天返回与遥感, 2021, 42(2): 12-19.
LI J Y, ZHANG C L, XING W. Numerical Simulation Studies of the Cushion Process for the New Genera-tion of Manned Spacecraft Re-entry Capsule[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(2): 12-19. (in Chinese).
[6]李喜晟, 余抗, 田林, 等. 新一代载人飞船返回舱着水方案研究[J].宇航学报, 2023, 44(12): 1820-1829.
LI X S, YU K, TIAN L, et al. Research on Scheme of Water Landing of the Crew Module of China’s Next-generation Manned Spacecraft[J]. Journal of Astro-nautics, 2023, 44(12): 1820-1829. (in Chinese).
[7]苑海燕, 杜继稳, 侯建忠, 等. “神舟六号”飞船着陆时段主着陆场区风场的数值模拟[J]. 气象科学, 2008, (01): 56-61.
YUAN H Y, DU J W, HOU J Z, et al. The numerical simulation of wind fields in main landing-area by model WRF in the phase of “Shen Zhou 6” spacecraft mission[J]. Science Meteorologica Sinica, 2008, (01): 56-61. (in Chinese).
[8]廖前芳, 程文科, 宋旭民, 等. 风场对舱-伞系统着陆姿态影响的仿真研究[J]. 航天返回与遥感, 2005, (02): 6-10.
LIAO Q F, CHENG W K, SONG X M, et al. The Simulation Study of Wind Influence on Attitude of Landing of Cabin-parachute Systems [J]. Spacecraft Recovery & Remote Sensing, 2005, (02): 6-10. (in Chinese).
[9]谢燕, 李道奎, 雷勇军. 一种返回舱座椅水平缓冲杆设计[J]. 振动与冲击, 2010, 29 (02): 179-183+229.
XIE Y, LI D K, LEI Y J. Design of horizontal cushion pole for a buffer-seat in crew return vehicle[J]. Jour-nal of Vibration and Shock, 2010, 29 (02): 179-183+229 (in Chinese).
[10]NAGESHA, B.K., et al., Review on characterization and impacts of the lattice structure in additive manu-facturing. Materials Today: Proceedings, 2020. 21: p. 916-919.
[11]YIN, H., et al., Review on lattice structures for energy absorption properties. Composite Structures, 2023. 304.
[12]Nazir, A., et al., A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. The International Journal of Ad-vanced Manufacturing Technology, 2019. 104(9-12): p. 3489-3510.
[13]TANCOGNE-DEJEAN, T., A.B. SPIERINGS, AND D. MOHR, Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia, 2016. 116: p. 14-28.
[14]NAZIR, A., et al., A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. The International Journal of Ad-vanced Manufacturing Technology, 2019. 104(9-12): p. 3489-3510.
[15] ZHANG, Q., et al., Superior energy absorption charac-teristics of additively-manufactured hollow-walled lat-tices. International Journal of Mechanical Sciences, 2023.
[16] CAO, X., et al., Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lat-tice structure of variable cross section. International Journal of Mechanical Sciences, 2018. 145: p. 53-63.
[17] CAO, X., et al., Dynamic compressive behavior of a modified additively manufactured rhombic dodecahe-dron 316L stainless steel lattice structure. Thin-Walled Structures, 2020. 148.
[18] Xiao, L., et al., Mechanical characterization of addi-tively-manufactured metallic lattice structures with hollow struts under static and dynamic loadings. Inter-national Journal of Impact Engineering, 2022. 169.
[19] Schaedler, T.A., et al., Ultralight metallic microlattices. Science, 2011. 334(6058): p. 962-5.
[20] STEPHEN D MARK, Orion Landing Simulation Eight Soil Model Comparison[R]. Langley Research Center, NASA/CR-2009-215757. https://ntrs.nasa.gov/citations/20090026521
文章导航

/