剪刀尾桨气动干扰与非常规布局参数影响研究

  • 朱王清 ,
  • 曹宸恺 ,
  • 赵国庆 ,
  • 招启军 ,
  • 朱清华 ,
  • 胡浩宇
展开
  • 南京航空航天大学

收稿日期: 2025-04-29

  修回日期: 2025-04-29

  网络出版日期: 2025-05-06

基金资助

中国博士后科学基金资助项目

Research on the Aerodynamic Interference of Scissor Tail Rotor and the Influence of Unconventional Layout Parameters

  • ZHU Wang-Qing ,
  • CAO Chen-Kai ,
  • ZHAO Guo-Qing ,
  • ZHAO Qi-Jun ,
  • ZHU Qing-Hua ,
  • HU Hao-Yu
Expand

Received date: 2025-04-29

  Revised date: 2025-04-29

  Online published: 2025-05-06

摘要

摘 要:与传统尾桨相比,剪刀尾桨因调制效应具有一定的降噪优势,但上、下旋翼间气动干扰诱发了气动效率损失问题。为了揭示剪刀尾桨的气动干扰机理,本文结合嵌套网格技术,构建了基于非定常雷诺平均Navier-Stokes方程的剪刀尾桨高精度流场数值模拟方法,开展了悬停状态下剪刀尾桨上、下旋翼气动干扰特性研究。系统分析了剪刀角、翼型、后掠桨尖等外形和布局参数对气动特性的影响规律,提出上、下旋翼不同总距配置、不同桨盘半径等非常规剪刀尾桨构型,并开展了气动干扰特性分析。结果表明:在总距不变的前提下,“U”型剪刀尾桨整体拉力与剪刀角呈现正相关,上、下桨盘拉力呈现此消彼长的变化特性;通过对比三种典型直升机尾桨翼型,OA翼型应用于剪刀尾桨中时悬停效率最佳;采用后掠构型虽不会提高剪刀尾桨的最大悬停效率,但可延缓尾桨的桨尖失速。非常规构型方面,通过实施下桨盘半径增大10%的改进方案,可使最大悬停效率较常规构型提升12.5%;合理调整下桨盘总距(较上桨盘增加2°)能优化载荷分配,实现整体效率2.4%的增益。

本文引用格式

朱王清 , 曹宸恺 , 赵国庆 , 招启军 , 朱清华 , 胡浩宇 . 剪刀尾桨气动干扰与非常规布局参数影响研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.32181

Abstract

Abstract: Compared with conventional tail rotors, scissor tail rotors exhibit certain noise reduction advantages due to their modu-lation effect, but suffer from aerodynamic efficiency loss caused by aerodynamic interference between upper and lower rotors. To improve the aerodynamic efficiency of scissor tail rotors, this paper employs overset grid technology to establish a high-precision numerical simulation method based on unsteady Reynolds-averaged Navier-Stokes (URANS) equations, investigating the aerody-namic interference characteristics of scissors tail rotors in hover. The research systematically analyzes the influence of configuration parameters including scissor angle, airfoil type, and swept blade tips on aerodynamic performance. Unconventional configurations featuring differential collective pitch settings and varying rotor disk radii between upper and lower rotors are proposed and evaluated. Results indi-cate that: Under constant total collective pitch, the "U"-type scissor tail rotors total thrust shows positive correlation with scissor angle, while upper and lower rotor thrusts demonstrate a seesaw relationship; Moreover, among three typical helicopter tail rotor airfoils, the OA airfoil achieves optimal hover efficiency. Additionally, swept blade tip configuration delays tip stall without improving maximum hover efficiency. Regarding unconventional configurations: Increasing lower rotor radius by 10% enhances maximum hover efficiency by 13% compared to conventional designs; Appropriately adjusting lower rotor collective pitch (+2° rela-tive to upper rotor) optimizes load distribution, achieving 2% overall efficiency gain.

参考文献

[1]XU G H, WANG S C, ZHAO J G. Experimental and analytical investigation on aerodynamic characteristics of helicopter scissors tail rotor [J].Chinese Journal of Aer-onautics, 2001, 14(4): 193-199.
[2]XU G H, ZHAO Q J, Peng Y H.Study on the induced velocity and noise characteristics of a scissors rotor[J].Journal of Aircraft, 2007, 44(3):806-811
[3]李志彬, 孙伟, 张羽霓, 等.剪刀式尾桨侧滑状态气动力及噪声特性计算[J].北京航空航天大学学报, 2023, 50(12):3794-3805
[4]LI Z B, SUN W, ZHANG Y N, et al.Computation on aerodynamic and aeroacoustic characteristics of scissor tail-rotor under sideslip condition[J].Journal of Beijing University of Aeronautics and Astronautics, 2023, 50(12):3794-3805
[5]李志彬, 杨永飞, 孙伟, 等.剪刀式尾桨前飞状态气动噪声特性计算[J].航空动力学报, 2022, 37(12):2691-2706
[6]LI Z B, YANG Y F, SUN W, et al.Computation on aero-acoustic characteristics of scissors tail-rotor in forward flight[J].Journal of Aerospace Power, 2022, 37(12):2691-2706
[7]樊枫, 史勇杰, 徐国华.剪刀式尾桨悬停状态气动力及噪声特性计算研究[J].航空学报, 2013, 34(09):2100-2109
[8]FAN F, SHI Y J, XU G H.Computational research on aerodyamic and aeroacoustic characteristics of scissors tail-otor in hover[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2100-2109
[9]樊枫, 徐国华, 史勇杰.基于-方程的剪刀式尾桨前飞状态气动力计算研究[J].空气动力学学报, 2014, 32(04):527-533
[10]FAN F, XU G H, SHl Y J.Computational research on aerodynamic force of scissors tailrotor in forward flight based on the N-S equations[J].ACTA Aerodynamica Sinica, 2014, 32(4):527-533
[11]朱正, 招启军, 王博.剪刀式尾桨涡流干扰机理和气动特性研究[J].力学学报, 2016, 48(04):886-896
[12]ZHU Z.ZHAO Q J,WANG BStudies on vortex inter-action mechanism and aerodynamic characteristic of scis-sors tail rotor[J].Chinese Journal of Theoretical and Ap-plied Mechanics, 2016, 48(04):886-896
[13]陈丝雨, 招启军, 范俊, 等.悬停状态剪刀式尾桨气动噪声特性优化分析[J].航空动力学报, 2019, 34(05):1050-1060
[14]CHEN S Y, ZHAO Q J, FAN J, et al.Optimization analyisis for aerodynamic noise characteristics of scis-sors tail rotor in hover[J]. Journal of Aerospace Power, 2019, 34(5): 1050-1060 (in Chinese).
[15]SPALART P R, ALLMARAS S R.A one-equation tur-bulence model for aerodynamic flows[C]. 30th aerospace sciences meeting and exhibit. Reno, NV, USA, 1992.
[16]THOMAS P D, MIDDLECOFF J F.Direct control of the grid point distribution in meshes generated by elliptic equations[J].AIAA Journal, 1980, 18(6):652-656
[17]POTSDAM M A, STRAWN R C.CFD simulations of tiltrotor configurations in hover[J].Journal of the Ameri-can Helicopter Society, 2005, 50(1):82-94
[18]ZHAO Q J, XU G H, ZHAO J G.New hybrid method for predicting the flowfields of helicopter rotors[J].Jour-nal of Aircraft, 2006, 43(2):372-380
[19]WANG B, ZHAO Q J, XU G H, et al.Numerical analy-sis on noise of rotor with unconventional blade tips based on CFDKirchhoff method[J].Chinese Journal of Aeronautics, 2013, 26(3):572-582
[20]MEAKIN R L.A new method for establishing intergrid communication among systems of overset grids[C]. 10th Computational Fluid Dynamics Conference. 1991: 1586.
[21]ZHAO Q J, XU G H, ZHAO J G.Numerical simula-tions of the unsteady flowfield of helicopter rotors on moving embedded grids[J].Aerospace Science and Technology, 2005, 9(2):117-124
[22]VAN LEER B.Towards the ultimate conservative differ-ence schemeV. A second-order sequel to Godunov's method[J].Journal of computational Physics, 1979, 32(1):101-136
[23]YOON S, JAMESON A.Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J].AIAA journal, 1988, 26(9):1025-1026
[24]CARADONNA F X, TUNG C.Experimental and ana-lytical studies of a model helicopter rotor in hover[C]. European rotorcraft and powered lift aircraft forum. 1981 (A-8332).
[25]HARRINGTON R D.Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor: NACA-TN-2318[R]. Washington, DC, U.S.A.: NACA, 1951.
[26]QI H, XU G, LU C, et al.A study of coaxial rotor aero-dynamic interaction mechanism in hover with high-efficient trim model[J]. Aerospace Science and Technolo-gy, 2019, 84: 1116-1130.
[27]LAKSHMINARAYAN V K, BAEDER J D.High-resolution computational investigation of trimmed coaxial rotor aerodynamics in hover[J].Journal of the American Helicopter Society, 2009, 54(4):42008-42008
[28]LAKSHMINARAYAN V K, BAEDER J D.Computa-tional investigation of microscale coaxial-rotor aerody-namics in hover[J].Journal of aircraft, 2010, 47(3):940-955
[29]卢丛玲, 史勇杰, 徐国华, 祁浩天.共轴刚性旋翼悬停状态气动干扰机理[J].南京航空航天大学学报, 2019, 51(02):201-207
[30]LU C L, SHI Y J, XU G H, et al.Research on aerody-namic interaction mechanism of rigid coaxial rotor in hover[J].Journal of Naniing University of Aeronautics & Astronautics, 2019, 51(2):201-207
[31]YUAN X, BIAN W, ZHAO Q, et al.Numerical investi-gation of aerodynamic interactions for the coaxial rotor system in low-speed forward flight[J]. Aerospace Sci-ence and Technology, 2024, 149: 109148.
文章导航

/