基于噪音与油耗的超音速客机进近程序优化研究

  • 李亚飞 ,
  • 赵瑞
展开
  • 1. 中国民航大学
    2. 中国民航大学空中交通管理学院

收稿日期: 2025-03-03

  修回日期: 2025-04-28

  网络出版日期: 2025-05-06

基金资助

中央高校基本科研业务费项目中国民航大学专项资助;天津市民航能源环境与绿色发展工程研究中心开放基金课题

Optimization study of supersonic airliner approach procedure based on noise and fuel consumption(超声速民机专刊)

  • LI Ya-Fei ,
  • ZHAO Rui
Expand
  • 1. Civil Aviation University of China
    2. 中国民航大学空中交通管理学院

Received date: 2025-03-03

  Revised date: 2025-04-28

  Online published: 2025-05-06

摘要

针对超音速客机在下降阶段的实际运行所面临的噪音污染严重及燃油成本高昂两大突出问题,本文以繁忙且具有代表性的民航枢纽机场—广州白云国际机场做为研究场景,依据现有的PBN进近程序,结合超音速客机飞行性能参数,开展了深入研究。首先,依据超音速客机独特的飞行性能,初步设计一条适用于超音速客机的进近程序。随后,通过选取机场附近噪音敏感点,运用噪音评估模型与油耗计算模型,采用多目标智能优化算法,对现行的PBN进近程序进行针对性的优化调整,使进近程序更适配于超音速客机降落阶段的实际运行,在保障飞行安全的前提下,最大程度降低噪音影响与运行油耗。研究结果显示:超音速客机遵循优化后的进近程序运行,噪音值与油耗值较优化前具有较大改进,噪音值最多降低37.3%,整体运行噪音影响降低了9.2%;油耗值最多降低16.45%,整体运行油耗降低了11.8%。

本文引用格式

李亚飞 , 赵瑞 . 基于噪音与油耗的超音速客机进近程序优化研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31919

Abstract

Aiming at the two prominent problems of serious noise pollution and high fuel cost faced by supersonic airliners in the descent phase, this paper takes Guangzhou Baiyun International Airport, a busy and representative civil aviation hub airport, as a research scenario, and carries out an in-depth study based on the existing PBN approach procedures, combined with the performance parameters of the flight of supersonic airliners. First, a preliminary approach procedure for supersonic airliners is designed based on the unique flight performance of supersonic airliners. Subsequently, by selecting noise-sensitive points near the airport, applying the noise assessment model and fuel consumption calculation model, and adopting the multi-objective intelligent optimization algorithm, the current PBN approach procedure is optimized and adjusted, so as to make the approach procedure more suitable for the actual operation of supersonic passenger aircraft during the landing phase, and to minimize the noise impact and fuel consumption under the prerequisite of safeguarding flight safety. The results of the study show that when the supersonic airliner follows the optimized approach procedure, the noise value and fuel consumption value are greatly improved compared with those before optimization, the noise value is reduced by 37.3% at most, and the overall operational noise impact is reduced by 9.2%; the fuel consumption value is reduced by 16.45% at most, and the overall operational fuel consumption is reduced by 11.8%.

参考文献

[1]Van Heerden A S J , Guenov M D , Molina-Cristobal A .Evolvability and design reuse in civil jet transport aircraft[J].Progress in Aerospace Sciences, 2019, 108(JUL.):121155.DOI:10.1016/j.paerosci.2019.01.006.
[2]Pollock, L., & Wild, G. (2024). An examination of high-speed aircraft –Part 1: Past, Present, and Future.?Transportation Engineering,?18. https://doi.org/10.1016/j.treng.2024.100290
[3]Candel,Sebastien.Concorde and the Future of Supersonic Transport[J].Journal of Propulsion & Power, 2015, 20(1):59-68.DOI:10.2514/1.9180.
[4]崔青,白俊强,宋源,等.基于增广Burgers方程的超声速客机远场声爆预测研究[J].航空工程进展,2021,12(02):88-97.DOI:10.16615/j.cnki.1674-8190.2021.02.10.
CUI Q, BAI J Q,SONG Y, et al.Far-field sonic boom prediction of supersonic airliners based on the augmented Burgers equation[J].Progress in aeronautical engineering,2021,12(02):88-97.DOI:10.16615/j.cnki.1674-8190.2021.02.10 (in Chinese).
[5]郝璇,张青青,苏诚,等.考虑配平特性的超声速客机低声爆气动布局优化研究[J].航空工程进展,2024,15(01):38-50.DOI:10.16615/j.cnki.1674-8190.2024.01.05.
HAO X,ZHANG Q Q,SU C, et al.Optimization study of low sonic boom aerodynamic layout of supersonic airliner considering leveling characteristics[J].Progress in aeronautical engineering,2024,15(01):38-50.DOI:10.16615/j.cnki.1674-8190.2024.01.05(in Chinese).
[6]Hay J A .Problems of cabin noise estimation for supersonic transports[J].Journal of Sound and Vibration, 1964, 1( 2):113-126.DOI:10.1016/0022-460X(64)90073-2.
[7]Lengyan, & Qian Zhansen. (2015). A CFD Based Sonic Boom Prediction Method and Investigation on the Parameters Affecting the Sonic Boom Signature.?Procedia Engineering,?99, 433–451.
[8]刘少伟,白俊强,余培汛,等.考虑声爆特性的超声速客机气动优化设计[J].西北工业大学学报,2020,38(02):271-278.
LIU S W,BAI J Q,YU P X, et al.Aerodynamic optimization of supersonic airliners considering sonic boom characteristics[J].Journal of Northwestern Polytechnical University,2020,38(02):271-278(in Chinese).
[9]Fisher L , Liu S , Maurice L ,et al.\"Supersonic aircraft: balancing fast, affordable, and green\"[J].International Journal of Aeroacoustics, 2004, 3(3):181-197.DOI:10.1260/1475472042887461.
[10]Robinson GS. The Regulatory Prohibition of International Supersonic Flights.?International and Comparative Law Quarterly. 1969;18(4):833-846. doi:10.1093/iclqaj/18.4.833.
[11]Webb, B. D., & Takahashi, T. T. (2022). Emerging Federal Regulatory Framework for Future Supersonic Transport Aircraft.?AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022.
[12]Nuic A , Poles R , Mouillet R .BADA: An advanced aircraft performance model for present and future ATM systems[J].International Journal of Adaptive Control & Signal Processing, 2010, 24(10):850-866.DOI:10.1002/acs.1176.
[13]Casado, R., Bermúdez, A., Hernández-Orallo, E., Boronat, P., Pérez-Francisco, M., & Calafate, C. T. (2023). Pollution and noise reduction through missed approach maneuvers based on aircraft reinjection.?Transportation Research Part D: Transport and Environment,?114.
[14]Dubois D , Paynter G C ."Fuel Flow Method2" for Estimating Aircraft Emissions[C]//Conference and Exhibition.2007.
[15]Report on Standard Method of Computing Noise Contours around Civil Airports. 1997
[16]Filippone, A. (2017). Options for aircraft noise reduction on arrival and landing.?Aerospace Science and Technology,?60, 31–38.
[17]单程军 贡天宇 易理哲 杨浩辉 龙垚松. 超声速民机高效高可信度声爆/气动多学科优化方法[J]. 航空学报,?doi: 10.7527/S1000-6893.2024.30573.
SHAN C J,GONG T Y, YI L Z, et al. High-efficiency and High-reliability Sonic Boom/Aerodynamic Multidisciplinary Optimization Method for Supersonic Civil Aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573. doi: 10.7527/S1000-6893.2024.30573(in Chinese).
[18]Cao, R., Leng, Z., Yu, J., & Hsu, S.-C. (2020). Multi-objective optimization for maintaining low-noise pavement network system in Hong Kong.?Transportation Research Part D: Transport and Environment,?88.
[19]杨磊, 李文博, 刘芳子, 陈雨童, 赵征. 柔性 空域结构下连续下降航迹多目标优化[J]. 航空学报, 2021, 42(2): 324157-324157.
YANG Lei, LI Wenbo, LIU Fangzi, CHEN Yutong, ZHAO Zheng. Multi-objective optimization of continuous descending trajectories in flexible airspace[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324157-324157(in Chinese).
[20]Hoa Pham, Q., Thanh Tran, T., Zenkour, A. M., & Nguyen-Thoi, T. (2023). Multi-objective optimization for free vibration of L-shaped bi-functionally graded sandwich plates using an effective finite element method and non-dominated sorting genetic algorithm II.?Composite Structures,?326. https://doi.org/10.1016/j.compstruct.2023.117622
文章导航

/